Suppr超能文献

杀菌剂驱动的灰霉菌群体中多药耐药性的进化和分子基础。

Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea.

机构信息

Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany.

出版信息

PLoS Pathog. 2009 Dec;5(12):e1000696. doi: 10.1371/journal.ppat.1000696. Epub 2009 Dec 18.

Abstract

The grey mould fungus Botrytis cinerea causes losses of commercially important fruits, vegetables and ornamentals worldwide. Fungicide treatments are effective for disease control, but bear the risk of resistance development. The major resistance mechanism in fungi is target protein modification resulting in reduced drug binding. Multiple drug resistance (MDR) caused by increased efflux activity is common in human pathogenic microbes, but rarely described for plant pathogens. Annual monitoring for fungicide resistance in field isolates from fungicide-treated vineyards in France and Germany revealed a rapidly increasing appearance of B. cinerea field populations with three distinct MDR phenotypes. All MDR strains showed increased fungicide efflux activity and overexpression of efflux transporter genes. Similar to clinical MDR isolates of Candida yeasts that are due to transcription factor mutations, all MDR1 strains were shown to harbor activating mutations in a transcription factor (Mrr1) that controls the gene encoding ABC transporter AtrB. MDR2 strains had undergone a unique rearrangement in the promoter region of the major facilitator superfamily transporter gene mfsM2, induced by insertion of a retrotransposon-derived sequence. MDR2 strains carrying the same rearranged mfsM2 allele have probably migrated from French to German wine-growing regions. The roles of atrB, mrr1 and mfsM2 were proven by the phenotypes of knock-out and overexpression mutants. As confirmed by sexual crosses, combinations of mrr1 and mfsM2 mutations lead to MDR3 strains with higher broad-spectrum resistance. An MDR3 strain was shown in field experiments to be selected against sensitive strains by fungicide treatments. Our data document for the first time the rising prevalence, spread and molecular basis of MDR populations in a major plant pathogen in agricultural environments. These populations will increase the risk of grey mould rot and hamper the effectiveness of current strategies for fungicide resistance management.

摘要

灰霉菌 Botrytis cinerea 会导致全球商业上重要的水果、蔬菜和观赏植物的损失。杀菌剂处理对疾病控制有效,但存在抗药性发展的风险。真菌的主要抗药性机制是靶蛋白修饰,导致药物结合减少。人类病原微生物中常见的多药耐药性(MDR)是由于外排活性增加引起的,但在植物病原体中很少描述。在法国和德国经杀菌剂处理的葡萄园田间分离物中进行的年度杀菌剂抗性监测显示,具有三种不同 MDR 表型的灰霉菌田间种群迅速出现。所有 MDR 菌株均显示出增加的杀菌剂外排活性和外排转运蛋白基因的过表达。与由于转录因子突变导致的临床 MDR 念珠菌分离株相似,所有 MDR1 菌株均显示出控制 ABC 转运蛋白 AtrB 基因表达的转录因子(Mrr1)的激活突变。MDR2 菌株在主要易化子超级家族转运蛋白基因 mfsM2 的启动子区域发生了独特的重排,这是由逆转录转座子衍生序列的插入诱导的。携带相同重排 mfsM2 等位基因的 MDR2 菌株可能已经从法国迁移到德国葡萄酒产区。atrB、mrr1 和 mfsM2 的作用通过敲除和过表达突变体的表型得到证实。正如有性杂交所证实的那样,mrr1 和 mfsM2 突变的组合导致具有更高广谱抗性的 MDR3 菌株。田间试验表明,MDR3 菌株在杀菌剂处理下被选择对抗敏感菌株。我们的数据首次记录了农业环境中主要植物病原体中 MDR 种群的流行率、传播和分子基础的上升。这些种群将增加灰霉病腐烂的风险,并阻碍当前杀菌剂抗性管理策略的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa2e/2785876/849eb0a4c126/ppat.1000696.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验