Suppr超能文献

单分子定位估计技术的定量研究

Quantitative study of single molecule location estimation techniques.

作者信息

Abraham Anish V, Ram Sripad, Chao Jerry, Ward E S, Ober Raimund J

机构信息

Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, MC9093, Dallas, TX 75390, USA.

出版信息

Opt Express. 2009 Dec 21;17(26):23352-73. doi: 10.1364/OE.17.023352.

Abstract

Estimating the location of single molecules from microscopy images is a key step in many quantitative single molecule data analysis techniques. Different algorithms have been advocated for the fitting of single molecule data, particularly the nonlinear least squares and maximum likelihood estimators. Comparisons were carried out to assess the performance of these two algorithms in different scenarios. Our results show that both estimators, on average, are able to recover the true location of the single molecule in all scenarios we examined. However, in the absence of modeling inaccuracies and low noise levels, the maximum likelihood estimator is more accurate than the nonlinear least squares estimator, as measured by the standard deviations of its estimates, and attains the best possible accuracy achievable for the sets of imaging and experimental conditions that were tested. Although neither algorithm is consistently superior to the other in the presence of modeling inaccuracies or misspecifications, the maximum likelihood algorithm emerges as a robust estimator producing results with consistent accuracy across various model mismatches and misspecifications. At high noise levels, relative to the signal from the point source, neither algorithm has a clear accuracy advantage over the other. Comparisons were also carried out for two localization accuracy measures derived previously. Software packages with user-friendly graphical interfaces developed for single molecule location estimation (EstimationTool) and limit of the localization accuracy calculations (FandPLimitTool) are also discussed.

摘要

从显微镜图像估计单分子的位置是许多定量单分子数据分析技术中的关键步骤。人们提倡使用不同的算法来拟合单分子数据,特别是非线性最小二乘法和最大似然估计器。我们进行了比较,以评估这两种算法在不同场景下的性能。我们的结果表明,在我们所研究的所有场景中,平均而言,这两种估计器都能够恢复单分子的真实位置。然而,在不存在建模误差和低噪声水平的情况下,通过估计的标准差衡量,最大似然估计器比非线性最小二乘估计器更准确,并且在测试的成像和实验条件集上达到了可实现的最佳精度。尽管在存在建模误差或错误指定的情况下,这两种算法都并非始终优于另一种,但最大似然算法作为一种稳健的估计器出现,在各种模型不匹配和错误指定的情况下都能产生具有一致精度的结果。在高噪声水平下,相对于点源的信号,这两种算法都没有明显的精度优势。我们还对先前推导的两种定位精度度量进行了比较。本文还讨论了为单分子位置估计(EstimationTool)和定位精度计算极限(FandPLimitTool)开发的具有用户友好图形界面的软件包。

相似文献

2
Comparison of estimation algorithms in single-molecule localization.单分子定位中估计算法的比较
Proc SPIE Int Soc Opt Eng. 2010 Feb 24;7570:757004. doi: 10.1117/12.842178.
3
Localization accuracy in single-molecule microscopy.单分子显微镜中的定位精度。
Biophys J. 2004 Feb;86(2):1185-200. doi: 10.1016/S0006-3495(04)74193-4.
5
Bayesian inference for improved single molecule fluorescence tracking.用于改进单分子荧光追踪的贝叶斯推理
Biophys J. 2008 Jun;94(12):4932-47. doi: 10.1529/biophysj.107.116285. Epub 2008 Mar 13.
8
Fundamental limits in 3D landmark localization.三维地标定位的基本限制。
Inf Process Med Imaging. 2005;19:286-98. doi: 10.1007/11505730_24.
9
Robust adaptive-scale parametric model estimation for computer vision.用于计算机视觉的鲁棒自适应尺度参数模型估计
IEEE Trans Pattern Anal Mach Intell. 2004 Nov;26(11):1459-74. doi: 10.1109/TPAMI.2004.109.
10

引用本文的文献

2
Localization Study of Photostable Alexa 488 at Single Molecule Level.单分子水平下光稳定型Alexa 488的定位研究
J Fluoresc. 2025 Feb;35(2):955-961. doi: 10.1007/s10895-023-03580-x. Epub 2024 Jan 12.
6
Modification to axial tracking for mobile magnetic microspheres.移动磁性微球轴向跟踪的改进。
Biophys Rep (N Y). 2021 Dec 8;1(2). doi: 10.1016/j.bpr.2021.100031. Epub 2021 Nov 10.
9
Effect of Pixelation on the Parameter Estimation of Single Molecule Trajectories.像素化对单分子轨迹参数估计的影响。
IEEE Trans Comput Imaging. 2020 Nov 23;7:98-113. doi: 10.1109/TCI.2020.3039951. eCollection 2021.

本文引用的文献

5
New directions in single-molecule imaging and analysis.单分子成像与分析的新方向。
Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12596-602. doi: 10.1073/pnas.0610081104. Epub 2007 Jul 30.
9
Imaging intracellular fluorescent proteins at nanometer resolution.以纳米分辨率成像细胞内荧光蛋白。
Science. 2006 Sep 15;313(5793):1642-5. doi: 10.1126/science.1127344. Epub 2006 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验