Suppr超能文献

用于生物标志物发现和疾病诊断的人类尿液蛋白质组的毛细管电泳-质谱分析。

CE-MS analysis of the human urinary proteome for biomarker discovery and disease diagnostics.

作者信息

Coon Joshua J, Zürbig Petra, Dakna Mohammed, Dominiczak Anna F, Decramer Stéphane, Fliser Danilo, Frommberger Moritz, Golovko Igor, Good David M, Herget-Rosenthal Stefan, Jankowski Joachim, Julian Bruce A, Kellmann Markus, Kolch Walter, Massy Ziad, Novak Jan, Rossing Kasper, Schanstra Joost P, Schiffer Eric, Theodorescu Dan, Vanholder Raymond, Weissinger Eva M, Mischak Harald, Schmitt-Kopplin Philippe

机构信息

Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

Proteomics Clin Appl. 2008 Jul 10;2(7-8):964. doi: 10.1002/prca.200800024.

Abstract

Owing to its availability, ease of collection, and correlation with pathophysiology of diseases, urine is an attractive source for clinical proteomics. However, many proteomic studies have had only limited clinical impact, due to factors such as modest numbers of subjects, absence of disease controls, small numbers of defined biomarkers, and diversity of analytical platforms. Therefore, it is difficult to merge biomarkers from different studies into a broadly applicable human urinary proteome database. Ideally, the methodology for defining the biomarkers should combine a reasonable analysis time with high resolution, thereby enabling the profiling of adequate samples and recognition of sufficient features to yield robust diagnostic panels. Capillary electrophoresis coupled to mass spectrometry (CE-MS), which was used to analyze urine samples from healthy subjects and patients with various diseases, is a suitable approach for this task. The database of these datasets compiled from the urinary peptides enabled the diagnosis, classification, and monitoring of a wide range of diseases. CE-MS exhibits excellent performance for biomarker discovery and allows subsequent biomarker sequencing independent of the separation platform. This approach may elucidate the pathogenesis of many diseases, and better define especially renal and urological disorders at the molecular level.

摘要

由于尿液易于获取、便于收集且与疾病的病理生理学相关,因此它是临床蛋白质组学中一个有吸引力的来源。然而,由于受试者数量有限、缺乏疾病对照、定义的生物标志物数量少以及分析平台的多样性等因素,许多蛋白质组学研究的临床影响有限。因此,很难将不同研究中的生物标志物整合到一个广泛适用的人类尿液蛋白质组数据库中。理想情况下,定义生物标志物的方法应将合理的分析时间与高分辨率相结合,从而能够对足够的样本进行分析,并识别出足够的特征以产生可靠的诊断指标。毛细管电泳-质谱联用(CE-MS)用于分析健康受试者和患有各种疾病患者的尿液样本,是完成这项任务的合适方法。从尿肽编译的这些数据集的数据库能够对多种疾病进行诊断、分类和监测。CE-MS在生物标志物发现方面表现出色,并允许独立于分离平台进行后续的生物标志物测序。这种方法可能阐明许多疾病的发病机制,并在分子水平上更好地定义特别是肾脏和泌尿系统疾病。

相似文献

1
CE-MS analysis of the human urinary proteome for biomarker discovery and disease diagnostics.
Proteomics Clin Appl. 2008 Jul 10;2(7-8):964. doi: 10.1002/prca.200800024.
2
Capillary electrophoresis-mass spectrometry in urinary proteome analysis: current applications and future developments.
Anal Bioanal Chem. 2009 Mar;393(5):1431-42. doi: 10.1007/s00216-008-2309-0. Epub 2008 Aug 15.
3
[Recent progress in capillary electrophoresis-based high-sensitivity proteomics].
Se Pu. 2020 Oct 8;38(10):1125-1132. doi: 10.3724/SP.J.1123.2020.03003.
4
Reproducibility Evaluation of Urinary Peptide Detection Using CE-MS.
Molecules. 2021 Nov 30;26(23):7260. doi: 10.3390/molecules26237260.
8
Biomarker discovery by CE-MS enables sequence analysis via MS/MS with platform-independent separation.
Electrophoresis. 2006 Jun;27(11):2111-25. doi: 10.1002/elps.200500827.

引用本文的文献

1
Development and Challenges of Pre-Heart Failure with Preserved Ejection Fraction.
Rev Cardiovasc Med. 2023 Sep 25;24(9):274. doi: 10.31083/j.rcm2409274. eCollection 2023 Sep.
2
Peptidome Profiling of Urine and Assessment of Its Antimicrobial Activity against Mastitis-Causing Pathogens.
Antibiotics (Basel). 2024 Mar 26;13(4):299. doi: 10.3390/antibiotics13040299.
4
5
Urinary Proteomic Profile of Arterial Stiffness Is Associated With Mortality and Cardiovascular Outcomes.
J Am Heart Assoc. 2022 Apr 19;11(8):e024769. doi: 10.1161/JAHA.121.024769. Epub 2022 Apr 12.
6
CE-MS for Proteomics and Intact Protein Analysis.
Adv Exp Med Biol. 2021;1336:51-86. doi: 10.1007/978-3-030-77252-9_4.
8
Urinary proteomics combined with home blood pressure telemonitoring for health care reform trial: rational and protocol.
Blood Press. 2021 Oct;30(5):269-281. doi: 10.1080/08037051.2021.1952061. Epub 2021 Aug 30.
9
Towards a biochemical approach to occupational stress management.
Heliyon. 2021 May 29;7(6):e07175. doi: 10.1016/j.heliyon.2021.e07175. eCollection 2021 Jun.

本文引用的文献

1
The urinary proteome in diabetes and diabetes-associated complications: New ways to assess disease progression and evaluate therapy.
Proteomics Clin Appl. 2008 Jul;2(7-8):997-1007. doi: 10.1002/prca.200780166. Epub 2008 Jul 10.
2
Recent progress in urinary proteomics.
Proteomics Clin Appl. 2007 Aug;1(8):780-91. doi: 10.1002/prca.200700035. Epub 2007 Jul 13.
3
Peptidomic analysis of rat urine using capillary electrophoresis coupled to mass spectrometry.
Proteomics Clin Appl. 2007 Jul;1(7):650-60. doi: 10.1002/prca.200700195. Epub 2007 Jun 8.
4
Clinical proteomics: A need to define the field and to begin to set adequate standards.
Proteomics Clin Appl. 2007 Feb;1(2):148-56. doi: 10.1002/prca.200600771. Epub 2007 Jan 22.
5
High-resolution proteome/peptidome analysis of peptides and low-molecular-weight proteins in urine.
Proteomics Clin Appl. 2007 Jul 10;1(8):792. doi: 10.1002/prca.200700043.
6
Discovery and validation of urinary biomarkers for prostate cancer.
Proteomics Clin Appl. 2008 Mar 7;2(4):556-570. doi: 10.1002/prca.200780082.
7
Electrophoretic methods for analysis of urinary polypeptides in IgA-associated renal diseases.
Electrophoresis. 2007 Dec;28(23):4469-83. doi: 10.1002/elps.200700237.
8
Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future.
J Proteome Res. 2007 Dec;6(12):4549-55. doi: 10.1021/pr070529w. Epub 2007 Oct 31.
9
Urinary proteomic biomarkers in coronary artery disease.
Mol Cell Proteomics. 2008 Feb;7(2):290-8. doi: 10.1074/mcp.M700394-MCP200. Epub 2007 Oct 19.
10
CE - a multifunctional application for clinical diagnosis.
Electrophoresis. 2007 May;28(9):1407-17. doi: 10.1002/elps.200600581.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验