Suppr超能文献

糖尿病性视网膜病变的自动检测:转化为临床实践的障碍。

Automated detection of diabetic retinopathy: barriers to translation into clinical practice.

机构信息

Department of Ophthalmology and Visual Sciences, University of Iowa, 11290C PFP UIHC, 200 Hawkins Drive, Iowa City, IA 52242, USA.

出版信息

Expert Rev Med Devices. 2010 Mar;7(2):287-96. doi: 10.1586/erd.09.76.

Abstract

Automated identification of diabetic retinopathy (DR), the primary cause of blindness and visual loss for those aged 18-65 years, from color images of the retina has enormous potential to increase the quality, cost-effectiveness and accessibility of preventative care for people with diabetes. Through advanced image analysis techniques, retinal images are analyzed for abnormalities that define and correlate with the severity of DR. Translating automated DR detection into clinical practice will require surmounting scientific and nonscientific barriers. Scientific concerns, such as DR detection limits compared with human experts, can be studied and measured. Ethical, legal and political issues can be addressed, but are difficult or impossible to measure. The primary objective of this review is to survey the methods, potential benefits and limitations of automated detection in order to better manage translation into clinical practice, based on extensive experience with the systems we have developed.

摘要

从视网膜的彩色图像中自动识别糖尿病视网膜病变(DR),这是 18-65 岁人群失明和视力丧失的主要原因,具有极大的潜力提高糖尿病患者预防保健的质量、成本效益和可及性。通过先进的图像分析技术,对视网膜图像进行分析,以识别和关联 DR 严重程度的异常。将自动 DR 检测转化为临床实践将需要克服科学和非科学的障碍。科学方面的担忧,例如与人类专家相比的 DR 检测限制,可以进行研究和测量。伦理、法律和政治问题可以得到解决,但难以或不可能进行衡量。本综述的主要目的是调查自动检测的方法、潜在的益处和局限性,以便更好地管理基于我们所开发的系统的转化为临床实践,这是基于我们的广泛经验。

相似文献

5
Algorithms for digital image processing in diabetic retinopathy.糖尿病视网膜病变的数字图像处理算法。
Comput Med Imaging Graph. 2009 Dec;33(8):608-22. doi: 10.1016/j.compmedimag.2009.06.003. Epub 2009 Jul 18.
6
Vessel network detection using contour evolution and color components.基于轮廓演化和颜色分量的血管网络检测
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3129-32. doi: 10.1109/IEMBS.2010.5626090.
10
Using a patient image archive to diagnose retinopathy.利用患者图像存档诊断视网膜病变。
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5441-4. doi: 10.1109/IEMBS.2008.4650445.

引用本文的文献

10
A review on automatic analysis techniques for color fundus photographs.彩色眼底照片自动分析技术综述
Comput Struct Biotechnol J. 2016 Oct 6;14:371-384. doi: 10.1016/j.csbj.2016.10.001. eCollection 2016.

本文引用的文献

1
Automated early detection of diabetic retinopathy.糖尿病性视网膜病变的自动早期检测。
Ophthalmology. 2010 Jun;117(6):1147-54. doi: 10.1016/j.ophtha.2010.03.046.
4
Comparison and evaluation of methods for liver segmentation from CT datasets.CT数据集肝脏分割方法的比较与评估
IEEE Trans Med Imaging. 2009 Aug;28(8):1251-65. doi: 10.1109/TMI.2009.2013851. Epub 2009 Feb 10.
5
Using a patient image archive to diagnose retinopathy.利用患者图像存档诊断视网膜病变。
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5441-4. doi: 10.1109/IEMBS.2008.4650445.
7
Automated localization of the optic disc and the fovea.视盘和中央凹的自动定位。
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3538-41. doi: 10.1109/IEMBS.2008.4649969.
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验