Suppr超能文献

基于光谱和计算方法的鼠源半胱氨酸双加氧酶与底物结合的特性研究:亚铁和高铁半胱氨酸加合物的本质及对其作用机制的影响。

Spectroscopic and computational characterization of substrate-bound mouse cysteine dioxygenase: nature of the ferrous and ferric cysteine adducts and mechanistic implications.

机构信息

Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.

出版信息

Biochemistry. 2010 Jul 27;49(29):6033-41. doi: 10.1021/bi100189h.

Abstract

Cysteine dioxygenase (CDO) is a mononuclear non-heme Fe-dependent dioxygenase that catalyzes the initial step of oxidative cysteine catabolism. Its active site consists of an Fe(II) ion ligated by three histidine residues from the protein, an interesting variation on the more common 2-His-1-carboxylate motif found in many other non-heme Fe(II)-dependent enzymes. Multiple structural and kinetic studies of CDO have been carried out recently, resulting in a variety of proposed catalytic mechanisms; however, many open questions remain regarding the structure/function relationships of this vital enzyme. In this study, resting and substrate-bound forms of CDO in the Fe(II) and Fe(III) states, both of which are proposed to have important roles in this enzyme's catalytic mechanism, were characterized by utilizing various spectroscopic methods. The nature of the substrate/active site interactions was also explored using the cysteine analogue selenocysteine (Sec). Our electronic absorption, magnetic circular dichroism, and resonance Raman data exhibit features characteristic of direct S (or Se) ligation to both the high-spin Fe(II) and Fe(III) active site ions. The resulting Cys- (or Sec-) bound species were modeled and further characterized using density functional theory computations to generate experimentally validated geometric and electronic structure descriptions. Collectively, our results yield a more complete description of several catalytically relevant species and provide support for a reaction mechanism similar to that established for many structurally related 2-His-1-carboxylate Fe(II)-dependent dioxygenases.

摘要

半胱氨酸双加氧酶 (CDO) 是一种单核非血红素 Fe 依赖性双氧酶,可催化氧化半胱氨酸分解代谢的初始步骤。其活性位点由三个组氨酸残基与蛋白中的 Fe(II) 离子配位组成,这种结构与许多其他非血红素 Fe(II)依赖性酶中更为常见的 2-His-1-carboxylate 基序不同,这是一个有趣的变化。最近已经进行了多项关于 CDO 的结构和动力学研究,提出了多种催化机制;然而,关于这种重要酶的结构/功能关系仍存在许多悬而未决的问题。在这项研究中,利用各种光谱方法对处于 Fe(II)和 Fe(III)状态的 CDO 的静息态和底物结合态进行了表征,这两种状态都被认为在该酶的催化机制中起重要作用。还使用半胱氨酸类似物硒代半胱氨酸 (Sec) 探索了底物/活性位点相互作用的性质。我们的电子吸收、磁圆二色性和共振拉曼数据显示出直接与高自旋 Fe(II)和 Fe(III)活性位点离子配位的 S(或 Se)的特征。使用密度泛函理论计算对所得 Cys-(或 Sec-)结合物进行建模和进一步表征,以生成经过实验验证的几何和电子结构描述。总的来说,我们的结果更完整地描述了几种催化相关的物种,并为类似于许多结构相关的 2-His-1-carboxylate Fe(II)依赖性双氧酶建立的反应机制提供了支持。

相似文献

7
Spectroscopic analysis of the mammalian enzyme cysteine dioxygenase.
Methods Enzymol. 2023;682:101-135. doi: 10.1016/bs.mie.2023.01.002. Epub 2023 Feb 15.
9
Differences in the Second Coordination Sphere Tailor the Substrate Specificity and Reactivity of Thiol Dioxygenases.
Acc Chem Res. 2022 Sep 6;55(17):2480-2490. doi: 10.1021/acs.accounts.2c00359. Epub 2022 Aug 22.

引用本文的文献

1
Spectroscopic, electrochemical, and kinetic trends in Fe(III)-thiolate disproportionation near physiologic pH.
J Biol Inorg Chem. 2024 Apr;29(3):291-301. doi: 10.1007/s00775-024-02051-3. Epub 2024 May 9.
2
A Single DNA Point Mutation Leads to the Formation of a Cysteine-Tyrosine Crosslink in the Cysteine Dioxygenase from .
Biochemistry. 2023 Jun 20;62(12):1964-1975. doi: 10.1021/acs.biochem.3c00083. Epub 2023 Jun 7.
3
Spectroscopic analysis of the mammalian enzyme cysteine dioxygenase.
Methods Enzymol. 2023;682:101-135. doi: 10.1016/bs.mie.2023.01.002. Epub 2023 Feb 15.
4
Differences in the Second Coordination Sphere Tailor the Substrate Specificity and Reactivity of Thiol Dioxygenases.
Acc Chem Res. 2022 Sep 6;55(17):2480-2490. doi: 10.1021/acs.accounts.2c00359. Epub 2022 Aug 22.
5
Low-Spin Cyanide Complexes of 3-Mercaptopropionic Acid Dioxygenase (MDO) Reveal the Impact of Outer-Sphere SHY-Motif Residues.
Inorg Chem. 2021 Dec 20;60(24):18639-18651. doi: 10.1021/acs.inorgchem.1c01519. Epub 2021 Dec 9.
7
Increasing reactivity by incorporating π-acceptor ligands into coordinatively unsaturated thiolate-ligated iron(II) complexes.
Inorganica Chim Acta. 2021 Sep 1;524. doi: 10.1016/j.ica.2021.120422. Epub 2021 Apr 30.
8
Spectroscopic Investigation of Cysteamine Dioxygenase.
Biochemistry. 2020 Jul 7;59(26):2450-2458. doi: 10.1021/acs.biochem.0c00267. Epub 2020 Jun 22.
10
A synthetic model of the nonheme iron-superoxo intermediate of cysteine dioxygenase.
Chem Commun (Camb). 2018 Oct 14;54(80):11344-11347. doi: 10.1039/c8cc06247a. Epub 2018 Sep 24.

本文引用的文献

2
A putative Fe2+-bound persulfenate intermediate in cysteine dioxygenase.
Biochemistry. 2008 Nov 4;47(44):11390-2. doi: 10.1021/bi801546n. Epub 2008 Oct 11.
4
Cysteine dioxygenase: structure and mechanism.
Chem Commun (Camb). 2007 Aug 28(32):3338-49. doi: 10.1039/b702158e.
6
An insight into the mechanism of human cysteine dioxygenase. Key roles of the thioether-bonded tyrosine-cysteine cofactor.
J Biol Chem. 2007 Feb 2;282(5):3391-402. doi: 10.1074/jbc.M609337200. Epub 2006 Nov 29.
7
Variations of the 2-His-1-carboxylate theme in mononuclear non-heme FeII oxygenases.
Chembiochem. 2006 Oct;7(10):1536-48. doi: 10.1002/cbic.200600152.
8
The first crystal structure of class III superoxide reductase from Treponema pallidum.
J Biol Inorg Chem. 2006 Jul;11(5):548-58. doi: 10.1007/s00775-006-0104-y. Epub 2006 May 6.
9
Probes of the catalytic site of cysteine dioxygenase.
J Biol Chem. 2006 Jun 9;281(23):15774-9. doi: 10.1074/jbc.M601269200. Epub 2006 Apr 11.
10
Crystal structure of mammalian cysteine dioxygenase. A novel mononuclear iron center for cysteine thiol oxidation.
J Biol Chem. 2006 Jul 7;281(27):18723-33. doi: 10.1074/jbc.M601555200. Epub 2006 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验