Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.
Intramural Research Program, National Institute on Drug Abuse, Department of Health and Human Services, Baltimore, Maryland 21224.
J Biol Chem. 2010 Aug 27;285(35):27346-27359. doi: 10.1074/jbc.M110.115634. Epub 2010 Jun 18.
G protein-coupled receptor (GPCR) heteromers are macromolecular complexes with unique functional properties different from those of its individual protomers. Little is known about what determines the quaternary structure of GPCR heteromers resulting in their unique functional properties. In this study, using resonance energy transfer techniques in experiments with mutated receptors, we provide for the first time clear evidence for a key role of intracellular domains in the determination of the quaternary structure of GPCR heteromers between adenosine A(2A), cannabinoid CB(1), and dopamine D(2) receptors. In these interactions, arginine-rich epitopes form salt bridges with phosphorylated serine or threonine residues from CK1/2 consensus sites. Each receptor (A(2A), CB(1), and D(2)) was found to include two evolutionarily conserved intracellular domains to establish selective electrostatic interactions with intracellular domains of the other two receptors, indicating that these particular electrostatic interactions constitute a general mechanism for receptor heteromerization. Mutation experiments indicated that the interactions of the intracellular domains of the CB(1) receptor with A(2A) and D(2) receptors are fundamental for the correct formation of the quaternary structure needed for the function (MAPK signaling) of the A(2A)-CB(1)-D(2) receptor heteromers. Analysis of MAPK signaling in striatal slices of CB(1) receptor KO mice and wild-type littermates supported the existence of A(1)-CB(1)-D(2) receptor heteromer in the brain. These findings allowed us to propose the first molecular model of the quaternary structure of a receptor heteromultimer.
G 蛋白偶联受体 (GPCR) 异源二聚体是具有独特功能特性的大分子复合物,与单体的功能特性不同。对于决定 GPCR 异源二聚体的四级结构从而产生其独特功能特性的因素知之甚少。在这项研究中,我们首次使用突变受体的共振能量转移技术,提供了明确的证据,证明细胞内结构域在腺苷 A(2A)、大麻素 CB(1)和多巴胺 D(2)受体之间 GPCR 异源二聚体的四级结构决定中起关键作用。在这些相互作用中,富含精氨酸的表位与 CK1/2 保守位点的磷酸化丝氨酸或苏氨酸残基形成盐桥。发现每个受体 (A(2A)、CB(1)和 D(2)) 都包含两个进化上保守的细胞内结构域,与另外两个受体的细胞内结构域建立选择性静电相互作用,表明这些特定的静电相互作用构成了受体异源二聚化的一般机制。突变实验表明,CB(1)受体的细胞内结构域与 A(2A)和 D(2)受体的相互作用对于形成 A(2A)-CB(1)-D(2)受体异源二聚体所需的四级结构的正确形成是基本的。对 CB(1)受体 KO 小鼠和野生型同窝仔鼠纹状体切片中 MAPK 信号的分析支持大脑中存在 A(1)-CB(1)-D(2)受体异源二聚体。这些发现使我们能够提出受体异源三聚体四级结构的第一个分子模型。