Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12151-6. doi: 10.1073/pnas.1004736107. Epub 2010 Jun 21.
Microtubules are typically observed to buckle and loop during interphase in cultured cells by an unknown mechanism. We show that lateral microtubule movement and looping is a result of microtubules sliding against one another in interphase Drosophila S2 cells. RNAi of the kinesin-1 heavy chain (KHC), but not dynein or the kinesin-1 light chain, eliminates these movements. KHC-dependent microtubule sliding powers the formation of cellular processes filled with parallel microtubule bundles. The growth of these cellular processes is independent of the actin cytoskeleton. We further observe cytoplasmic microtubule sliding in Xenopus and Ptk2 cells, and show that antibody inhibition of KHC in mammalian cells prevents sliding. We therefore propose that, in addition to its well established role in organelle transport, an important universal function of kinesin-1 is to mediate cytoplasmic microtubule-microtubule sliding. This provides the cell with a dedicated mechanism to transport long and short microtubule filaments and drive changes in cell shape.
微管在培养细胞的间期通常通过未知机制观察到弯曲和环化。我们表明,侧向微管运动和环化是间期果蝇 S2 细胞中微管相互滑动的结果。肌球蛋白-1 重链 (KHC) 的 RNAi,但不是动力蛋白或肌球蛋白-1 轻链,消除了这些运动。KHC 依赖性微管滑动为充满平行微管束的细胞过程的形成提供动力。这些细胞过程的生长与肌动蛋白细胞骨架无关。我们进一步观察到爪蟾和 Ptk2 细胞中的细胞质微管滑动,并表明在哺乳动物细胞中用抗体抑制 KHC 可防止滑动。因此,我们提出,除了其在细胞器运输中的既定作用外,驱动蛋白-1 的一个重要普遍功能是介导细胞质微管-微管滑动。这为细胞提供了一种专用机制来运输长和短的微管丝,并驱动细胞形状的变化。