Suppr超能文献

驱动细胞形状变化的微管滑动由驱动蛋白-1 重链介导。

Kinesin-1 heavy chain mediates microtubule sliding to drive changes in cell shape.

机构信息

Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12151-6. doi: 10.1073/pnas.1004736107. Epub 2010 Jun 21.

Abstract

Microtubules are typically observed to buckle and loop during interphase in cultured cells by an unknown mechanism. We show that lateral microtubule movement and looping is a result of microtubules sliding against one another in interphase Drosophila S2 cells. RNAi of the kinesin-1 heavy chain (KHC), but not dynein or the kinesin-1 light chain, eliminates these movements. KHC-dependent microtubule sliding powers the formation of cellular processes filled with parallel microtubule bundles. The growth of these cellular processes is independent of the actin cytoskeleton. We further observe cytoplasmic microtubule sliding in Xenopus and Ptk2 cells, and show that antibody inhibition of KHC in mammalian cells prevents sliding. We therefore propose that, in addition to its well established role in organelle transport, an important universal function of kinesin-1 is to mediate cytoplasmic microtubule-microtubule sliding. This provides the cell with a dedicated mechanism to transport long and short microtubule filaments and drive changes in cell shape.

摘要

微管在培养细胞的间期通常通过未知机制观察到弯曲和环化。我们表明,侧向微管运动和环化是间期果蝇 S2 细胞中微管相互滑动的结果。肌球蛋白-1 重链 (KHC) 的 RNAi,但不是动力蛋白或肌球蛋白-1 轻链,消除了这些运动。KHC 依赖性微管滑动为充满平行微管束的细胞过程的形成提供动力。这些细胞过程的生长与肌动蛋白细胞骨架无关。我们进一步观察到爪蟾和 Ptk2 细胞中的细胞质微管滑动,并表明在哺乳动物细胞中用抗体抑制 KHC 可防止滑动。因此,我们提出,除了其在细胞器运输中的既定作用外,驱动蛋白-1 的一个重要普遍功能是介导细胞质微管-微管滑动。这为细胞提供了一种专用机制来运输长和短的微管丝,并驱动细胞形状的变化。

相似文献

引用本文的文献

9
Cellular cartography: Towards an atlas of the neuronal microtubule cytoskeleton.细胞图谱:迈向神经元微管细胞骨架图谱
Front Cell Dev Biol. 2023 Mar 22;11:1052245. doi: 10.3389/fcell.2023.1052245. eCollection 2023.
10
Electro-detachment of kinesin motor domain from microtubule in silico.在计算机模拟中驱动蛋白运动结构域从微管上的电分离。
Comput Struct Biotechnol J. 2023 Jan 21;21:1349-1361. doi: 10.1016/j.csbj.2023.01.018. eCollection 2023.

本文引用的文献

4
The role of microtubule movement in bidirectional organelle transport.微管运动在双向细胞器运输中的作用。
Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10011-6. doi: 10.1073/pnas.0800031105. Epub 2008 Jul 14.
7
Axonal transport of microtubules: the long and short of it.微管的轴突运输:其来龙去脉
Traffic. 2006 May;7(5):490-8. doi: 10.1111/j.1600-0854.2006.00392.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验