Zhang Meiling, Chekan Jonathan R, Dodd Dylan, Hong Pei-Ying, Radlinski Lauren, Revindran Vanessa, Nair Satish K, Mackie Roderick I, Cann Isaac
Energy Biosciences Institute, Institute for Genomic Biology, and Departments of Animal Sciences.
Biochemistry, and.
Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):E3708-17. doi: 10.1073/pnas.1406156111. Epub 2014 Aug 18.
Enzymes that degrade dietary and host-derived glycans represent the most abundant functional activities encoded by genes unique to the human gut microbiome. However, the biochemical activities of a vast majority of the glycan-degrading enzymes are poorly understood. Here, we use transcriptome sequencing to understand the diversity of genes expressed by the human gut bacteria Bacteroides intestinalis and Bacteroides ovatus grown in monoculture with the abundant dietary polysaccharide xylan. The most highly induced carbohydrate active genes encode a unique glycoside hydrolase (GH) family 10 endoxylanase (BiXyn10A or BACINT_04215 and BACOVA_04390) that is highly conserved in the Bacteroidetes xylan utilization system. The BiXyn10A modular architecture consists of a GH10 catalytic module disrupted by a 250 amino acid sequence of unknown function. Biochemical analysis of BiXyn10A demonstrated that such insertion sequences encode a new family of carbohydrate-binding modules (CBMs) that binds to xylose-configured oligosaccharide/polysaccharide ligands, the substrate of the BiXyn10A enzymatic activity. The crystal structures of CBM1 from BiXyn10A (1.8 Å), a cocomplex of BiXyn10A CBM1 with xylohexaose (1.14 Å), and the CBM from its homolog in the Prevotella bryantii B14 Xyn10C (1.68 Å) reveal an unanticipated mode for ligand binding. A minimal enzyme mix, composed of the gene products of four of the most highly up-regulated genes during growth on wheat arabinoxylan, depolymerizes the polysaccharide into its component sugars. The combined biochemical and biophysical studies presented here provide a framework for understanding fiber metabolism by an important group within the commensal bacterial population known to influence human health.
降解膳食和宿主来源聚糖的酶代表了人类肠道微生物群特有的基因所编码的最丰富的功能活性。然而,绝大多数聚糖降解酶的生化活性仍知之甚少。在这里,我们使用转录组测序来了解在含有丰富膳食多糖木聚糖的单培养物中生长的人类肠道细菌肠拟杆菌和卵形拟杆菌所表达基因的多样性。诱导程度最高的碳水化合物活性基因编码一种独特的糖苷水解酶(GH)家族10内切木聚糖酶(BiXyn10A或BACINT_04215和BACOVA_04390),它在拟杆菌属木聚糖利用系统中高度保守。BiXyn10A的模块化结构由一个GH10催化模块组成,该模块被一个功能未知的250个氨基酸序列打断。对BiXyn10A的生化分析表明,这些插入序列编码了一个新的碳水化合物结合模块(CBM)家族,该家族与木糖构型的寡糖/多糖配体结合,而木糖构型的寡糖/多糖配体是BiXyn10A酶活性的底物。来自BiXyn10A的CBM1(1.8 Å)、BiXyn10A CBM1与木六糖的共复合物(1.14 Å)以及来自普氏栖粪杆菌B14 Xyn10C中其同源物的CBM(1.68 Å)的晶体结构揭示了一种意想不到的配体结合模式。一种由在小麦阿拉伯木聚糖上生长期间四个上调程度最高的基因的基因产物组成的最小酶混合物,可将多糖解聚为其组成糖。本文介绍的综合生化和生物物理研究为理解已知影响人类健康的共生细菌群体中的一个重要群体的纤维代谢提供了一个框架。