Department of Epidemiology and Biostatistics, University of Florida, Gainesville, 32610-0231, USA.
Am J Epidemiol. 2010 Nov 1;172(9):1085-91. doi: 10.1093/aje/kwq244. Epub 2010 Aug 26.
Recently, it has been shown how to estimate model-adjusted risks, risk differences, and risk ratios from complex survey data based on risk averaging and SUDAAN (Research Triangle Institute, Research Triangle Park, North Carolina). The authors present an alternative approach based on marginal structural models (MSMs) and SAS (SAS Institute, Inc., Cary, North Carolina). The authors estimate the parameters of the MSM using inverse weights that are the product of 2 terms. The first term is a survey weight that adjusts the sample to represent the unstandardized population. The second term is an inverse-probability-of-exposure weight that standardizes the population in order to adjust for confounding; it must be estimated using the survey weights. The authors show how to use the MSM parameter estimates and contrasts to test and estimate effect-measure modification; SAS code is provided. They also explain how to program the previous risk-averaging approach in SAS. The 2 methods are applied and compared using data from the 2007 Florida Behavioral Risk Factor Surveillance System Survey to assess effect modification by age of the difference in risk of cost barriers to health care between persons with disability and persons without disability.
最近,已经展示了如何基于风险平均和 SUDAAN(Research Triangle Institute,Research Triangle Park,North Carolina)从复杂调查数据中估计模型调整后的风险、风险差异和风险比。作者提出了一种基于边缘结构模型(MSMs)和 SAS(SAS Institute,Inc.,Cary,North Carolina)的替代方法。作者使用逆权重估计 MSM 的参数,该权重是两个术语的乘积。第一个术语是调整样本以代表未标准化人群的调查权重。第二个术语是暴露可能性的逆概率权重,它对人群进行标准化以调整混杂因素;必须使用调查权重来估计它。作者展示了如何使用 MSM 参数估计值和对比来检验和估计效果度量的修饰;提供了 SAS 代码。他们还解释了如何在 SAS 中编程以前的风险平均方法。使用来自 2007 年佛罗里达州行为风险因素监测系统调查的数据应用和比较了这两种方法,以评估残疾人和非残疾人之间医疗保健费用障碍风险差异的年龄对效应修饰的影响。