Suppr超能文献

通过面部动作单元自动检测视频中的疼痛。

Automatically detecting pain in video through facial action units.

作者信息

Lucey Patrick, Cohn Jeffrey F, Matthews Iain, Lucey Simon, Sridharan Sridha, Howlett Jessica, Prkachin Kenneth M

机构信息

Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2011 Jun;41(3):664-74. doi: 10.1109/TSMCB.2010.2082525. Epub 2010 Nov 22.

Abstract

In a clinical setting, pain is reported either through patient self-report or via an observer. Such measures are problematic as they are: 1) subjective, and 2) give no specific timing information. Coding pain as a series of facial action units (AUs) can avoid these issues as it can be used to gain an objective measure of pain on a frame-by-frame basis. Using video data from patients with shoulder injuries, in this paper, we describe an active appearance model (AAM)-based system that can automatically detect the frames in video in which a patient is in pain. This pain data set highlights the many challenges associated with spontaneous emotion detection, particularly that of expression and head movement due to the patient's reaction to pain. In this paper, we show that the AAM can deal with these movements and can achieve significant improvements in both the AU and pain detection performance compared to the current-state-of-the-art approaches which utilize similarity-normalized appearance features only.

摘要

在临床环境中,疼痛是通过患者自我报告或观察者报告的。这些测量方法存在问题,因为它们:1)主观,2)没有给出具体的时间信息。将疼痛编码为一系列面部动作单元(AU)可以避免这些问题,因为它可以用于逐帧获得疼痛的客观测量。本文利用肩部受伤患者的视频数据,描述了一种基于主动外观模型(AAM)的系统,该系统可以自动检测视频中患者处于疼痛状态的帧。这个疼痛数据集突出了与自发情绪检测相关的许多挑战,特别是由于患者对疼痛的反应而导致的表情和头部运动。在本文中,我们表明AAM可以处理这些运动,并且与仅利用相似度归一化外观特征的当前最先进方法相比,在AU和疼痛检测性能方面都可以实现显著改进。

相似文献

1
Automatically detecting pain in video through facial action units.通过面部动作单元自动检测视频中的疼痛。
IEEE Trans Syst Man Cybern B Cybern. 2011 Jun;41(3):664-74. doi: 10.1109/TSMCB.2010.2082525. Epub 2010 Nov 22.
2
Fully automatic recognition of the temporal phases of facial actions.面部动作时间阶段的全自动识别。
IEEE Trans Syst Man Cybern B Cybern. 2012 Feb;42(1):28-43. doi: 10.1109/TSMCB.2011.2163710. Epub 2011 Sep 15.

引用本文的文献

5
Video Assessment to Detect Amyotrophic Lateral Sclerosis.用于检测肌萎缩侧索硬化症的视频评估
Digit Biomark. 2024 Aug 29;8(1):171-180. doi: 10.1159/000540547. eCollection 2024 Jan-Dec.
7
Artificial Intelligence in Perioperative Planning and Management of Liver Resection.人工智能在肝切除围手术期规划与管理中的应用
Indian J Surg Oncol. 2024 May;15(Suppl 2):186-195. doi: 10.1007/s13193-024-01883-4. Epub 2024 Jan 23.
9
Using AI to Detect Pain through Facial Expressions: A Review.利用人工智能通过面部表情检测疼痛:综述
Bioengineering (Basel). 2023 May 2;10(5):548. doi: 10.3390/bioengineering10050548.

本文引用的文献

2
Toward practical smile detection.迈向实用的微笑检测。
IEEE Trans Pattern Anal Mach Intell. 2009 Nov;31(11):2106-11. doi: 10.1109/TPAMI.2009.42.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验