Suppr超能文献

高分辨率全基因组活体内足迹分析鉴定人细胞中多样化的转录因子。

High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells.

机构信息

Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina 27708, USA.

出版信息

Genome Res. 2011 Mar;21(3):456-64. doi: 10.1101/gr.112656.110. Epub 2010 Nov 24.

Abstract

Regulation of gene transcription in diverse cell types is determined largely by varied sets of cis-elements where transcription factors bind. Here we demonstrate that data from a single high-throughput DNase I hypersensitivity assay can delineate hundreds of thousands of base-pair resolution in vivo footprints in human cells that precisely mark individual transcription factor-DNA interactions. These annotations provide a unique resource for the investigation of cis-regulatory elements. We find that footprints for specific transcription factors correlate with ChIP-seq enrichment and can accurately identify functional versus nonfunctional transcription factor motifs. We also find that footprints reveal a unique evolutionary conservation pattern that differentiates functional footprinted bases from surrounding DNA. Finally, detailed analysis of CTCF footprints suggests multiple modes of binding and a novel DNA binding motif upstream of the primary binding site.

摘要

不同细胞类型中的基因转录调控在很大程度上取决于转录因子结合的不同顺式作用元件。在这里,我们证明来自单个高通量 DNase I 超敏反应测定的数据可以描绘出数十万碱基分辨率的体内足迹,这些足迹可以精确地标示单个转录因子-DNA 相互作用。这些注释为顺式调控元件的研究提供了独特的资源。我们发现,特定转录因子的足迹与 ChIP-seq 富集相关,并且可以准确识别功能与非功能转录因子基序。我们还发现,足迹揭示了一种独特的进化保守模式,可将功能足迹碱基与周围 DNA 区分开来。最后,对 CTCF 足迹的详细分析表明存在多种结合模式以及主结合位点上游的新 DNA 结合基序。

相似文献

1
High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells.
Genome Res. 2011 Mar;21(3):456-64. doi: 10.1101/gr.112656.110. Epub 2010 Nov 24.
2
An expansive human regulatory lexicon encoded in transcription factor footprints.
Nature. 2012 Sep 6;489(7414):83-90. doi: 10.1038/nature11212.
4
Explicit DNase sequence bias modeling enables high-resolution transcription factor footprint detection.
Nucleic Acids Res. 2014 Oct 29;42(19):11865-78. doi: 10.1093/nar/gku810. Epub 2014 Oct 7.
5
Global reference mapping of human transcription factor footprints.
Nature. 2020 Jul;583(7818):729-736. doi: 10.1038/s41586-020-2528-x. Epub 2020 Jul 29.
6
Protein-DNA interactions upstream from the human A gamma globin gene.
Nucleic Acids Res. 1990 Apr 25;18(8):1977-82. doi: 10.1093/nar/18.8.1977.
7
DeFCoM: analysis and modeling of transcription factor binding sites using a motif-centric genomic footprinter.
Bioinformatics. 2017 Apr 1;33(7):956-963. doi: 10.1093/bioinformatics/btw740.
8
Members of the Sp transcription factor family control transcription from the uteroglobin promoter.
J Biol Chem. 1995 May 26;270(21):12737-44. doi: 10.1074/jbc.270.21.12737.

引用本文的文献

1
High-resolution CTCF footprinting reveals impact of chromatin state on cohesin extrusion.
Nat Commun. 2025 May 15;16(1):4506. doi: 10.1038/s41467-025-57775-w.
2
A genetically informed brain atlas for enhancing brain imaging genomics.
Nat Commun. 2025 Apr 14;16(1):3524. doi: 10.1038/s41467-025-57636-6.
3
4
Integration of single-cell transcriptome and chromatin accessibility and its application on tumor investigation.
Life Med. 2024 Apr 26;3(2):lnae015. doi: 10.1093/lifemedi/lnae015. eCollection 2024 Apr.
7
Genome-wide Prediction of Chromatin Accessibility Based on Gene Expression.
Wiley Interdiscip Rev Comput Stat. 2021 Sep-Oct;13(5). doi: 10.1002/wics.1544. Epub 2020 Dec 17.
8
Genotype inference from aggregated chromatin accessibility data reveals genetic regulatory mechanisms.
bioRxiv. 2024 Sep 5:2024.09.04.610850. doi: 10.1101/2024.09.04.610850.
9
Identification of transcription factor co-binding patterns with non-negative matrix factorization.
Nucleic Acids Res. 2024 Oct 14;52(18):e85. doi: 10.1093/nar/gkae743.
10
The characteristics of CTCF binding sequences contribute to enhancer blocking activity.
Nucleic Acids Res. 2024 Sep 23;52(17):10180-10193. doi: 10.1093/nar/gkae666.

本文引用的文献

1
Heritable individual-specific and allele-specific chromatin signatures in humans.
Science. 2010 Apr 9;328(5975):235-9. doi: 10.1126/science.1184655. Epub 2010 Mar 18.
2
An atlas of combinatorial transcriptional regulation in mouse and man.
Cell. 2010 Mar 5;140(5):744-52. doi: 10.1016/j.cell.2010.01.044.
3
DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells.
Cold Spring Harb Protoc. 2010 Feb;2010(2):pdb.prot5384. doi: 10.1101/pdb.prot5384.
4
CTCF binding site classes exhibit distinct evolutionary, genomic, epigenomic and transcriptomic features.
Genome Biol. 2009;10(11):R131. doi: 10.1186/gb-2009-10-11-r131. Epub 2009 Nov 18.
5
CTCF: master weaver of the genome.
Cell. 2009 Jun 26;137(7):1194-211. doi: 10.1016/j.cell.2009.06.001.
6
Diversity and complexity in DNA recognition by transcription factors.
Science. 2009 Jun 26;324(5935):1720-3. doi: 10.1126/science.1162327. Epub 2009 May 14.
7
Global mapping of protein-DNA interactions in vivo by digital genomic footprinting.
Nat Methods. 2009 Apr;6(4):283-9. doi: 10.1038/nmeth.1313. Epub 2009 Mar 22.
8
A census of human transcription factors: function, expression and evolution.
Nat Rev Genet. 2009 Apr;10(4):252-63. doi: 10.1038/nrg2538.
9
Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data.
Nat Methods. 2008 Sep;5(9):829-34. doi: 10.1038/nmeth.1246.
10
UniPROBE: an online database of protein binding microarray data on protein-DNA interactions.
Nucleic Acids Res. 2009 Jan;37(Database issue):D77-82. doi: 10.1093/nar/gkn660. Epub 2008 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验