Suppr超能文献

将血流动力学模型与动态因果模型进行比较。

Comparing hemodynamic models with DCM.

作者信息

Stephan Klaas Enno, Weiskopf Nikolaus, Drysdale Peter M, Robinson Peter A, Friston Karl J

机构信息

Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3BG, UK, and Brain Dynamics Center, Westmead Millenium Institute, Westmead Hospital, NSW, Australia.

出版信息

Neuroimage. 2007 Nov 15;38(3):387-401. doi: 10.1016/j.neuroimage.2007.07.040. Epub 2007 Aug 11.

Abstract

The classical model of blood oxygen level-dependent (BOLD) responses by Buxton et al. [Buxton, R.B., Wong, E.C., Frank, L.R., 1998. Dynamics of blood flow and oxygenation changes during brain activation: the Balloon model. Magn. Reson. Med. 39, 855-864] has been very important in providing a biophysically plausible framework for explaining different aspects of hemodynamic responses. It also plays an important role in the hemodynamic forward model for dynamic causal modeling (DCM) of fMRI data. A recent study by Obata et al. [Obata, T., Liu, T.T., Miller, K.L., Luh, W.M., Wong, E.C., Frank, L.R., Buxton, R.B., 2004. Discrepancies between BOLD and flow dynamics in primary and supplementary motor areas: application of the Balloon model to the interpretation of BOLD transients. NeuroImage 21, 144-153] linearized the BOLD signal equation and suggested a revised form for the model coefficients. In this paper, we show that the classical and revised models are special cases of a generalized model. The BOLD signal equation of this generalized model can be reduced to that of the classical Buxton model by simplifying the coefficients or can be linearized to give the Obata model. Given the importance of hemodynamic models for investigating BOLD responses and analyses of effective connectivity with DCM, the question arises which formulation is the best model for empirically measured BOLD responses. In this article, we address this question by embedding different variants of the BOLD signal equation in a well-established DCM of functional interactions among visual areas. This allows us to compare the ensuing models using Bayesian model selection. Our model comparison approach had a factorial structure, comparing eight different hemodynamic models based on (i) classical vs. revised forms for the coefficients, (ii) linear vs. non-linear output equations, and (iii) fixed vs. free parameters, epsilon, for region-specific ratios of intra- and extravascular signals. Using fMRI data from a group of twelve subjects, we demonstrate that the best model is a non-linear model with a revised form for the coefficients, in which epsilon is treated as a free parameter.

摘要

巴克斯顿等人提出的血氧水平依赖(BOLD)反应的经典模型[巴克斯顿,R.B.,王,E.C.,弗兰克,L.R.,1998年。大脑激活过程中血流和氧合变化的动力学:气球模型。《磁共振医学》39卷,第855 - 864页]在为解释血液动力学反应的不同方面提供一个生物物理上合理的框架方面非常重要。它在功能磁共振成像(fMRI)数据的动态因果建模(DCM)的血液动力学正向模型中也起着重要作用。小畑等人最近的一项研究[小畑,T.,刘,T.T.,米勒,K.L.,卢,W.M.,王,E.C.,弗兰克,L.R.,巴克斯顿,R.B.,2004年。初级和辅助运动区BOLD与血流动力学之间的差异:气球模型在BOLD瞬变解释中的应用。《神经影像学》21卷,第144 - 153页]将BOLD信号方程线性化,并提出了模型系数的修订形式。在本文中,我们表明经典模型和修订模型是一个广义模型的特殊情况。通过简化系数,这个广义模型的BOLD信号方程可以简化为经典巴克斯顿模型的方程,或者可以线性化得到小畑模型。鉴于血液动力学模型对于研究BOLD反应以及与DCM进行有效连接分析的重要性,就出现了一个问题,即哪种公式是用于实证测量的BOLD反应的最佳模型。在本文中,我们通过将BOLD信号方程的不同变体嵌入到一个成熟的视觉区域之间功能相互作用的DCM中来解决这个问题。这使我们能够使用贝叶斯模型选择来比较由此产生的模型。我们的模型比较方法具有析因结构,基于(i)系数的经典形式与修订形式、(ii)线性与非线性输出方程以及(iii)血管内和血管外信号的区域特定比率的固定参数与自由参数ε,比较了八种不同的血液动力学模型。使用来自一组12名受试者的fMRI数据,我们证明最佳模型是一个系数采用修订形式的非线性模型,其中ε被视为自由参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88e6/2829291/a3819652f33a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验