Department of Bioengineering, University of California, Riverside, CA 92521, USA.
Ann Biomed Eng. 2011 Apr;39(4):1252-63. doi: 10.1007/s10439-010-0226-9. Epub 2010 Dec 8.
Electrostatic interactions are ubiquitous in proteins and dictate stability and function. In this review, we discuss several methods for the analysis of electrostatics in protein-protein interactions. We discuss alanine-scanning mutagenesis, Poisson-Boltzmann electrostatics, free energy calculations, electrostatic similarity distances, and hierarchical clustering of electrostatic potentials. Our recently developed computational framework, known as Analysis of Electrostatic Similarities Of Proteins (AESOP), incorporates these tools to efficiently elucidate the role of electrostatic potentials in protein interactions. We present the application of AESOP to several proteins and protein complexes, for which charge is purported to facilitate protein association. Specifically, we illustrate how recent work has shaped the formulation of electrostatic calculations, the correlation of electrostatic free energies and electrostatic potential clustering results with experimental binding and activity data, the pH dependence of protein stability and association, the design of mutant proteins with enhanced immunological activity, and how AESOP can expose deficiencies in structural models and experimental data. This integrative approach can be utilized to develop mechanistic models and to guide experimental studies by predicting mutations with desired physicochemical properties and function. Alteration of the electrostatic properties of proteins offers a basis for the design of proteins with optimized binding and activity.
静电相互作用在蛋白质中普遍存在,并决定了其稳定性和功能。在这篇综述中,我们讨论了几种分析蛋白质-蛋白质相互作用中静电作用的方法。我们讨论了丙氨酸扫描突变、泊松-玻尔兹曼静电、自由能计算、静电相似距离和静电势的层次聚类。我们最近开发的计算框架,称为蛋白质静电相似性分析(AESOP),整合了这些工具,以有效地阐明静电势在蛋白质相互作用中的作用。我们将 AESOP 应用于几个被认为通过电荷促进蛋白质结合的蛋白质和蛋白质复合物。具体来说,我们说明了最近的工作如何塑造了静电计算的公式化、静电自由能与静电势聚类结果与实验结合和活性数据的相关性、蛋白质稳定性和结合的 pH 依赖性、具有增强免疫活性的突变蛋白的设计,以及 AESOP 如何揭示结构模型和实验数据的缺陷。这种综合方法可用于开发机械模型,并通过预测具有所需物理化学性质和功能的突变来指导实验研究。改变蛋白质的静电性质为设计具有优化结合和活性的蛋白质提供了基础。