Institute of Neuroscience and Medicine (INM-6), Computational and Systems Neuroscience, Research Center Jülich Jülich, Germany.
Front Comput Neurosci. 2010 Nov 23;4:141. doi: 10.3389/fncom.2010.00141. eCollection 2010.
A major puzzle in the field of computational neuroscience is how to relate system-level learning in higher organisms to synaptic plasticity. Recently, plasticity rules depending not only on pre- and post-synaptic activity but also on a third, non-local neuromodulatory signal have emerged as key candidates to bridge the gap between the macroscopic and the microscopic level of learning. Crucial insights into this topic are expected to be gained from simulations of neural systems, as these allow the simultaneous study of the multiple spatial and temporal scales that are involved in the problem. In particular, synaptic plasticity can be studied during the whole learning process, i.e., on a time scale of minutes to hours and across multiple brain areas. Implementing neuromodulated plasticity in large-scale network simulations where the neuromodulatory signal is dynamically generated by the network itself is challenging, because the network structure is commonly defined purely by the connectivity graph without explicit reference to the embedding of the nodes in physical space. Furthermore, the simulation of networks with realistic connectivity entails the use of distributed computing. A neuromodulated synapse must therefore be informed in an efficient way about the neuromodulatory signal, which is typically generated by a population of neurons located on different machines than either the pre- or post-synaptic neuron. Here, we develop a general framework to solve the problem of implementing neuromodulated plasticity in a time-driven distributed simulation, without reference to a particular implementation language, neuromodulator, or neuromodulated plasticity mechanism. We implement our framework in the simulator NEST and demonstrate excellent scaling up to 1024 processors for simulations of a recurrent network incorporating neuromodulated spike-timing dependent plasticity.
计算神经科学领域的一个主要难题是如何将高等生物的系统水平学习与突触可塑性联系起来。最近,不仅取决于前突触和后突触活动,而且还取决于第三个非局部神经调质信号的可塑性规则已成为弥合学习宏观和微观水平之间差距的关键候选者。预计从神经系统的模拟中可以获得对该主题的重要见解,因为这些模拟允许同时研究涉及该问题的多个空间和时间尺度。特别是,可以在整个学习过程中研究突触可塑性,即可以在几分钟到几个小时的时间尺度上并在多个大脑区域中进行研究。在大型网络模拟中实现受神经调质调节的可塑性是具有挑战性的,因为神经调质信号是由网络本身动态生成的,而网络结构通常仅通过连接图定义,而没有明确提及节点在物理空间中的嵌入。此外,具有现实连通性的网络的模拟需要使用分布式计算。因此,必须以有效的方式通知受神经调质调节的突触有关神经调质信号的信息,而该信号通常是由位于与前突触或后突触神经元不同的机器上的神经元群体生成的。在这里,我们开发了一个通用框架来解决在时间驱动的分布式模拟中实现受神经调质调节的可塑性的问题,而无需参考特定的实现语言,神经调质或受神经调质调节的可塑性机制。我们在模拟器 NEST 中实现了我们的框架,并证明了在模拟包含受神经调质调节的尖峰时间依赖性可塑性的递归网络时,可极好地扩展到 1024 个处理器。