Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
Wiley Interdiscip Rev Syst Biol Med. 2011 Jul-Aug;3(4):479-89. doi: 10.1002/wsbm.131. Epub 2010 Dec 31.
Tuberculosis (TB) is a deadly infectious disease caused by Mycobacterium tuberculosis (Mtb). No available vaccine is reliable and, although treatment exists, approximately 2 million people still die each year. The hallmark of TB infection is the granuloma, a self-organizing structure of immune cells forming in the lung and lymph nodes in response to bacterial invasion. Protective immune mechanisms play a role in granuloma formation and maintenance; these act over different time/length scales (e.g., molecular, cellular, and tissue scales). The significance of specific immune factors in determining disease outcome is still poorly understood, despite incredible efforts to establish several animal systems to track infection progression and granuloma formation. Mathematical and computational modeling approaches have recently been applied to address open questions regarding host-pathogen interaction dynamics, including the immune response to Mtb infection and TB granuloma formation. This provides a unique opportunity to identify factors that are crucial to a successful outcome of infection in humans. These modeling tools not only offer an additional avenue for exploring immune dynamics at multiple biological scales but also complement and extend knowledge gained via experimental tools. We review recent modeling efforts in capturing the immune response to Mtb, emphasizing the importance of a multiorgan and multiscale approach that has tuneable resolution. Together with experimentation, systems biology has begun to unravel key factors driving granuloma formation and protective immune response in TB. WIREs Syst Biol Med 2011 3 479-489 DOI: 10.1002/wsbm.131
结核病(TB)是由结核分枝杆菌(Mtb)引起的致命传染病。目前尚无可靠的疫苗,尽管有治疗方法,但每年仍有约 200 万人死亡。TB 感染的标志是肉芽肿,这是一种由免疫细胞自我组织形成的结构,在肺部和淋巴结中形成,以应对细菌入侵。保护性免疫机制在肉芽肿的形成和维持中发挥作用;这些机制在不同的时间/长度尺度上起作用(例如,分子、细胞和组织尺度)。尽管人们付出了巨大的努力来建立几个跟踪感染进展和肉芽肿形成的动物系统,但仍不清楚特定免疫因素在决定疾病结局方面的重要性。最近,数学和计算建模方法已被应用于解决宿主-病原体相互作用动力学方面的悬而未决的问题,包括对 Mtb 感染和 TB 肉芽肿形成的免疫反应。这为确定对人类感染成功至关重要的因素提供了一个独特的机会。这些建模工具不仅为在多个生物学尺度上探索免疫动力学提供了另一种途径,而且还补充和扩展了通过实验工具获得的知识。我们回顾了最近在捕捉 Mtb 免疫反应方面的建模工作,强调了采用多器官和多尺度方法的重要性,这种方法具有可调分辨率。与实验一起,系统生物学已经开始揭示驱动肉芽肿形成和保护性免疫反应的关键因素。WIREs Syst Biol Med 2011 3 479-489 DOI: 10.1002/wsbm.131