Suppr超能文献

时间序列数据综合信息的实用测度。

Practical measures of integrated information for time-series data.

机构信息

Sackler Centre for Consciousness Science and School of Informatics, University of Sussex, Brighton, United Kingdom.

出版信息

PLoS Comput Biol. 2011 Jan 20;7(1):e1001052. doi: 10.1371/journal.pcbi.1001052.

Abstract

A recent measure of 'integrated information', Φ(DM), quantifies the extent to which a system generates more information than the sum of its parts as it transitions between states, possibly reflecting levels of consciousness generated by neural systems. However, Φ(DM) is defined only for discrete Markov systems, which are unusual in biology; as a result, Φ(DM) can rarely be measured in practice. Here, we describe two new measures, Φ(E) and Φ(AR), that overcome these limitations and are easy to apply to time-series data. We use simulations to demonstrate the in-practice applicability of our measures, and to explore their properties. Our results provide new opportunities for examining information integration in real and model systems and carry implications for relations between integrated information, consciousness, and other neurocognitive processes. However, our findings pose challenges for theories that ascribe physical meaning to the measured quantities.

摘要

最近的一项“综合信息”(Φ(DM))度量标准,量化了系统在状态之间转换时产生的信息量超过其各部分总和的程度,这可能反映了神经系统产生的意识水平。然而,Φ(DM)仅针对离散马尔可夫系统定义,而这些系统在生物学中并不常见;因此,在实践中很少能够测量到 Φ(DM)。在这里,我们描述了两种新的度量标准,Φ(E)和 Φ(AR),它们克服了这些限制,并且易于应用于时间序列数据。我们使用模拟来演示我们的度量标准在实践中的适用性,并探索它们的性质。我们的结果为在真实和模型系统中检查信息整合提供了新的机会,并对综合信息、意识和其他神经认知过程之间的关系产生了影响。然而,我们的发现对那些将测量量赋予物理意义的理论提出了挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa48/3024259/131d60682e53/pcbi.1001052.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验