文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

优化使用超短回波时间脉冲序列检测氧化铁纳米颗粒:T1、T2* 和协同 T1-T2* 对比机制的比较。

Optimization of iron oxide nanoparticle detection using ultrashort echo time pulse sequences: comparison of T1, T2*, and synergistic T1- T2* contrast mechanisms.

机构信息

Department of Radiology, University of California, San Diego, California 92103-8226, USA.

出版信息

Magn Reson Med. 2011 Jun;65(6):1649-60. doi: 10.1002/mrm.22755. Epub 2011 Feb 8.


DOI:10.1002/mrm.22755
PMID:21305596
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3097261/
Abstract

Iron oxide nanoparticles (IONPs) are used in various MRI applications as negative contrast agents. A major challenge is to distinguish regions of signal void due to IONPs from those due to low signal tissues or susceptibility artifacts. To overcome this limitation, several positive contrast strategies have been proposed. Relying on IONP T(1) shortening effects to generate positive contrast is a particularly appealing strategy because it should provide additional specificity when associated with the usual negative contrast from effective transverse relaxation time (T(2)) effects. In this article, ultrashort echo time imaging is shown to be a powerful technique which can take full advantage of both contrast mechanisms. Methods of comparing T(1) and T(2) contrast efficiency are described and general rules that allow optimizing IONP detection sensitivity are derived. Contrary to conventional wisdom, optimizing T(1) contrast is often a good strategy for imaging IONPs. Under certain conditions, subtraction of a later echo signal from the ultrashort echo time signal not only improves IONP specificity by providing long T(2)* background suppression but also increases detection sensitivity, as it enables a synergistic combination of usually antagonist T(1) and T(2)* contrasts. In vitro experiments support our theory, and a molecular imaging application is demonstrated using tumor-targeted IONPs in vivo.

摘要

氧化铁纳米颗粒(IONPs)在各种 MRI 应用中用作阴性对比剂。一个主要的挑战是区分由于 IONPs 引起的信号缺失区域与由于低信号组织或磁化率伪影引起的信号缺失区域。为了克服这一限制,已经提出了几种阳性对比策略。利用 IONP T(1)缩短效应产生阳性对比是一种特别有吸引力的策略,因为当与有效横向弛豫时间(T(2)*)效应的通常阴性对比结合使用时,它应该提供额外的特异性。本文表明,超短回波时间成像是一种强大的技术,可以充分利用这两种对比机制。描述了比较 T(1)和 T(2)*对比效率的方法,并得出了允许优化 IONP 检测灵敏度的一般规则。与传统观念相反,优化 T(1)对比通常是 IONP 成像的一个很好的策略。在某些条件下,从超短回波时间信号中减去稍后的回波信号不仅通过提供长 T(2)*背景抑制来提高 IONP 的特异性,而且还提高了检测灵敏度,因为它能够使通常拮抗的 T(1)和 T(2)*对比协同组合。体外实验支持我们的理论,并展示了使用肿瘤靶向 IONPs 在体内进行分子成像应用的实例。

相似文献

[1]
Optimization of iron oxide nanoparticle detection using ultrashort echo time pulse sequences: comparison of T1, T2*, and synergistic T1- T2* contrast mechanisms.

Magn Reson Med. 2011-2-8

[2]
T₁-weighted ultrashort echo time method for positive contrast imaging of magnetic nanoparticles and cancer cells bound with the targeted nanoparticles.

J Magn Reson Imaging. 2011-1

[3]
Ultrashort echo time (UTE) imaging of receptor targeted magnetic iron oxide nanoparticles in mouse tumor models.

J Magn Reson Imaging. 2014-11

[4]
Synthesis Of PEG-Coated, Ultrasmall, Manganese-Doped Iron Oxide Nanoparticles With High Relaxivity For T/T Dual-Contrast Magnetic Resonance Imaging.

Int J Nanomedicine. 2019-10-24

[5]
Quantitative contrast-enhanced MRI with superparamagnetic nanoparticles using ultrashort time-to-echo pulse sequences.

Magn Reson Med. 2015-8

[6]
Optimization of pulse sequences in magnetic resonance lymphography of axillary lymph nodes using magnetic nanoparticles.

J Nanosci Nanotechnol. 2009-7

[7]
Molecular MR Imaging of Prostate Cancer by Specified Iron Oxide Nanoparticles With PSMA-11 Peptides: A Preclinical Study.

J Magn Reson Imaging. 2024-6

[8]
Establishing the overlap of IONP quantification with echo and echoless MR relaxation mapping.

Magn Reson Med. 2017-6-26

[9]
Toward absolute quantification of iron oxide nanoparticles as well as cell internalized fraction using multiparametric MRI.

Contrast Media Mol Imaging. 2012

[10]
Imaging the distribution of iron oxide nanoparticles in hypothermic perfused tissues.

Magn Reson Med. 2020-5

引用本文的文献

[1]
Iron oxide based magnetic nanoparticles for hyperthermia, MRI and drug delivery applications: a review.

RSC Adv. 2025-4-14

[2]
Superparamagnetic iron oxide nanoparticle enhanced percutaneous microwave ablation: Ex-vivo characterization using magnetic resonance thermometry.

Med Phys. 2024-5

[3]
Contrast Enhancement in MRI Using Combined Double Action Contrast Agents and Image Post-Processing in the Breast Cancer Model.

Materials (Basel). 2023-4-14

[4]
Detection of iron oxide nanoparticle (IONP)-labeled stem cells using quantitative ultrashort echo time imaging: a feasibility study.

Quant Imaging Med Surg. 2023-2-1

[5]
Mn(ii) chelate-coated superparamagnetic iron oxide nanocrystals as high-efficiency magnetic resonance imaging contrast agents.

Nanoscale Adv. 2020-6-17

[6]
Assessment of endothelial colony forming cells delivery routes in a murine model of critical limb threatening ischemia using an optimized cell tracking approach.

Stem Cell Res Ther. 2022-6-21

[7]
Use of Multiplied, Added, Subtracted and/or FiTted Inversion Recovery (MASTIR) pulse sequences.

Quant Imaging Med Surg. 2020-6

[8]
Magnetic Nanoparticles as MRI Contrast Agents.

Top Curr Chem (Cham). 2020-5-7

[9]
Optimization of molecularly targeted MRI in the brain: empirical comparison of sequences and particles.

Int J Nanomedicine. 2018-7-25

[10]
Visualization of Iron Oxide Enhancement in Focal Pulmonary Inflammatory Lesions Using a Three-Dimensional Radial Gradient-Echo-Based Ultrashort Echo Time Sequence: A Preliminary Study.

Korean J Radiol. 2018-1-2

本文引用的文献

[1]
Magnetic Iron Oxide Nanoworms for Tumor Targeting and Imaging.

Adv Mater. 2008-5-5

[2]
Optimization of RF excitation to maximize signal and T2 contrast of tissues with rapid transverse relaxation.

Magn Reson Med. 2010-8

[3]
Nanoparticle-induced vascular blockade in human prostate cancer.

Blood. 2010-6-29

[4]
Tissue-penetrating delivery of compounds and nanoparticles into tumors.

Cancer Cell. 2009-12-8

[5]
Detection and quantification of magnetically labeled cells by cellular MRI.

Eur J Radiol. 2009-5

[6]
Quantitative MR susceptibility mapping using piece-wise constant regularized inversion of the magnetic field.

Magn Reson Med. 2008-10

[7]
Susceptibility gradient mapping (SGM): a new postprocessing method for positive contrast generation applied to superparamagnetic iron oxide particle (SPIO)-labeled cells.

Magn Reson Med. 2008-9

[8]
Sensitive and automated detection of iron-oxide-labeled cells using phase image cross-correlation analysis.

Magn Reson Imaging. 2008-6

[9]
Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-resonant water suppression (IRON).

Magn Reson Med. 2007-11

[10]
Ultrashort echo time spectroscopic imaging (UTESI) of cortical bone.

Magn Reson Med. 2007-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索