Department of Radiology, University of California, San Diego, California 92103-8226, USA.
Magn Reson Med. 2011 Jun;65(6):1649-60. doi: 10.1002/mrm.22755. Epub 2011 Feb 8.
Iron oxide nanoparticles (IONPs) are used in various MRI applications as negative contrast agents. A major challenge is to distinguish regions of signal void due to IONPs from those due to low signal tissues or susceptibility artifacts. To overcome this limitation, several positive contrast strategies have been proposed. Relying on IONP T(1) shortening effects to generate positive contrast is a particularly appealing strategy because it should provide additional specificity when associated with the usual negative contrast from effective transverse relaxation time (T(2)) effects. In this article, ultrashort echo time imaging is shown to be a powerful technique which can take full advantage of both contrast mechanisms. Methods of comparing T(1) and T(2) contrast efficiency are described and general rules that allow optimizing IONP detection sensitivity are derived. Contrary to conventional wisdom, optimizing T(1) contrast is often a good strategy for imaging IONPs. Under certain conditions, subtraction of a later echo signal from the ultrashort echo time signal not only improves IONP specificity by providing long T(2)* background suppression but also increases detection sensitivity, as it enables a synergistic combination of usually antagonist T(1) and T(2)* contrasts. In vitro experiments support our theory, and a molecular imaging application is demonstrated using tumor-targeted IONPs in vivo.
氧化铁纳米颗粒(IONPs)在各种 MRI 应用中用作阴性对比剂。一个主要的挑战是区分由于 IONPs 引起的信号缺失区域与由于低信号组织或磁化率伪影引起的信号缺失区域。为了克服这一限制,已经提出了几种阳性对比策略。利用 IONP T(1)缩短效应产生阳性对比是一种特别有吸引力的策略,因为当与有效横向弛豫时间(T(2)*)效应的通常阴性对比结合使用时,它应该提供额外的特异性。本文表明,超短回波时间成像是一种强大的技术,可以充分利用这两种对比机制。描述了比较 T(1)和 T(2)*对比效率的方法,并得出了允许优化 IONP 检测灵敏度的一般规则。与传统观念相反,优化 T(1)对比通常是 IONP 成像的一个很好的策略。在某些条件下,从超短回波时间信号中减去稍后的回波信号不仅通过提供长 T(2)*背景抑制来提高 IONP 的特异性,而且还提高了检测灵敏度,因为它能够使通常拮抗的 T(1)和 T(2)*对比协同组合。体外实验支持我们的理论,并展示了使用肿瘤靶向 IONPs 在体内进行分子成像应用的实例。
J Magn Reson Imaging. 2014-11
Magn Reson Med. 2017-6-26
Contrast Media Mol Imaging. 2012
Magn Reson Med. 2020-5
Quant Imaging Med Surg. 2020-6
Top Curr Chem (Cham). 2020-5-7
Int J Nanomedicine. 2018-7-25
Adv Mater. 2008-5-5
Blood. 2010-6-29
Cancer Cell. 2009-12-8
Eur J Radiol. 2009-5
Magn Reson Med. 2007-11