Department of Operative Medicine, Innsbruck Medical University, Anichstraße 35, A-6020 Innsbruck, Austria. Breath Research Unit of the Austrian Academy of Sciences, Dammstrasse 22, A-6850 Dornbirn, Austria.
J Breath Res. 2009 Jun;3(2):027003. doi: 10.1088/1752-7155/3/2/027003. Epub 2009 May 15.
The present study was performed to determine the variations of breath acetone concentrations with age, gender and body-mass index (BMI). Previous investigations were based on a relatively small cohort of subjects (see Turner et al 2006 Physiol. Meas. 27 321-37). Since exhaled breath analysis is affected by considerable variation, larger studies are needed to get reliable information about the correlation of concentrations of volatiles in breath when compared with age, gender and BMI. Mixed expiratory exhaled breath was sampled using Tedlar bags. The concentrations of a mass-to-charge ratio (m/z) of 59, attributed to acetone, were then determined using proton transfer reaction-mass spectrometry. Our cohort, consisting of 243 adult volunteers not suffering from diabetes, was divided into two groups: one that fasted overnight prior to sampling (215 volunteers) and the other without a dietary control (28 volunteers). In addition, we considered a group of 44 healthy children (5-11 years old).The fasted subjects' concentrations of acetone ranged from 177 ppb to 2441 ppb, with an overall geometric mean (GM) of 628 ppb; in the group without a dietary control, the subjects' concentrations ranged from 281 ppb to 1246 ppb with an overall GM of 544 ppb. We found no statistically significant shift between the distributions of acetone levels in the breath of males and females in the fasted group (the Wilcoxon-Mann-Whitney test yielded p = 0.0923, the medians being 652 ppb and 587 ppb). Similarly, there did not seem to be a difference between the acetone levels of males and females in the group without a dietary control. Aging was associated with a slight increase of acetone in the fasted females; in males the increase was not statistically significant. Compared with the adults (a merged group), our group of children (5-11 years old) showed lower concentrations of acetone (p < 0.001), with a median of 263 ppb. No correlation was found between the acetone levels and BMI in adults. Our results extend those of Turner et al's (2006 Physiol. Meas. 27 321-37), who analyzed the breath of 30 volunteers (without a dietary control) by selected ion flow tube-mass spectrometry. They reported a positive correlation with age (but without statistical significance in their cohort, with p = 0.82 for males and p = 0.45 for females), and, unlike us, arrived at a p-value of 0.02 for the separation of males and females with respect to acetone concentrations. Our median acetone concentration for children (5-11 years) coincides with the median acetone concentration of young adults (17-19 years) reported by Spanel et al (2007 J. Breath Res. 1 026001).
本研究旨在确定呼吸丙酮浓度随年龄、性别和体重指数(BMI)的变化。先前的研究基于相对较小的受试者队列(参见 Turner 等人,2006 年《生理学测量》27,321-37)。由于呼气分析受到相当大的变化的影响,因此需要进行更大规模的研究,以获得关于与年龄、性别和 BMI 相比,呼吸中挥发性物质浓度相关性的可靠信息。使用 Tedlar 袋采集混合呼气呼出的呼吸样本。然后使用质子转移反应质谱法测定质量电荷比(m/z)为 59 的物质的浓度,该物质归因于丙酮。我们的队列由 243 名未患有糖尿病的成年志愿者组成,分为两组:一组在采样前进行了一夜禁食(215 名志愿者),另一组没有饮食控制(28 名志愿者)。此外,我们还考虑了一组 44 名健康儿童(5-11 岁)。禁食组志愿者的丙酮浓度范围为 177 ppb 至 2441 ppb,总体几何平均值(GM)为 628 ppb;在没有饮食控制的组中,志愿者的浓度范围为 281 ppb 至 1246 ppb,总体 GM 为 544 ppb。我们发现禁食组中男性和女性呼吸中丙酮水平的分布之间没有统计学上的显著差异(Wilcoxon-Mann-Whitney 检验得出 p=0.0923,中位数分别为 652 ppb 和 587 ppb)。同样,没有饮食控制组中男性和女性之间的丙酮水平似乎也没有差异。与禁食的女性相比,年龄增长与丙酮的轻微增加有关;而在男性中,这种增加没有统计学意义。与成年人(合并组)相比,我们的儿童组(5-11 岁)的丙酮浓度较低(p<0.001),中位数为 263 ppb。在成年人中未发现丙酮水平与 BMI 之间存在相关性。我们的结果扩展了 Turner 等人的结果(2006 年《生理学测量》27,321-37),他们通过选择离子流管质谱法分析了 30 名志愿者(没有饮食控制)的呼吸。他们报告了与年龄的正相关(但在他们的队列中没有统计学意义,男性 p=0.82,女性 p=0.45),而且与我们不同的是,他们得出了一个 p 值为 0.02,用于区分男性和女性的丙酮浓度。我们的儿童(5-11 岁)的丙酮中位数与 Spanel 等人(2007 年《呼吸研究杂志》1,026001)报道的年轻成年人(17-19 岁)的丙酮中位数相吻合。