Suppr超能文献

利用活体自适应光学成像技术测量人类和非人类灵长类动物视乳头筛板孔几何形状的可重复性。

Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging.

机构信息

College of Optometry, University of Houston, Houston, Texas 77204, USA.

出版信息

Invest Ophthalmol Vis Sci. 2011 Jul 23;52(8):5473-80. doi: 10.1167/iovs.11-7347.

Abstract

PURPOSE

The ability to consistently resolve lamina cribrosa pores in vivo has applications in the study of optic nerve head and retinal disease mechanisms. Repeatability was assessed in imaging laminar pores in normal living eyes with a confocal adaptive optics scanning laser ophthalmoscope (AOSLO).

METHODS

Reflectance images (840 nm) of the anterior lamina cribrosa were acquired using the AOSLO in four or more different sessions in two normal rhesus monkey eyes and three normal human eyes. Laminar pore areas, elongations (ratio of major to minor axes of the best-fit ellipse) and nearest neighbor distances were calculated for each session. Measurement repeatability was assessed across sessions.

RESULTS

Pore areas ranged from 90 to 4365 μm(2) in monkeys and 154 to 6637 μm(2) in humans. Mean variabilities in measuring pore area and elongation (i.e., mean of the standard deviation of measurements made across sessions for the same pores) were 50 μm(2) (6.1%) and 0.13 (6.7%), respectively, in monkeys and 113 μm(2) (8.3%) and 0.17 (7.7%), respectively, in humans. Mean variabilities in measuring nearest neighbor distances were 1.93 μm (5.2%) in monkeys and 2.79 μm (4.1%) in humans. There were no statistically significant differences in any pore parameters across sessions (ANOVA, P > 0.05).

CONCLUSIONS

The anterior lamina cribrosa was consistently imaged in vivo in normal monkey and human eyes. The small intersession variability in normal pore geometry suggests that AOSLO imaging could be used to measure and track changes in laminar pores in vivo during glaucomatous progression.

摘要

目的

能够在活体中持续分辨出视盘筛板孔具有研究视神经头和视网膜疾病机制的应用价值。利用共焦自适应光学扫描激光检眼镜(AOSLO)在正常活体眼中成像,评估了在不同时间重复成像视盘筛板孔的能力。

方法

在两只正常猕猴眼和三只正常人眼中,用 AOSLO 采集前筛板的反射图像(840nm),并在 4 个或更多不同的时间点采集。计算每个时间点的筛板孔面积、伸长率(最佳拟合椭圆的长轴与短轴之比)和最近邻距离。评估各时间点的测量重复性。

结果

在猴子中,孔面积范围为 90 至 4365μm(2),在人类中为 154 至 6637μm(2)。在猴子中,测量孔面积和伸长率的平均值变异(即同一孔在不同时间点测量的标准偏差的平均值)分别为 50μm(2)(6.1%)和 0.13(6.7%),在人类中分别为 113μm(2)(8.3%)和 0.17(7.7%)。测量最近邻距离的平均值变异在猴子中为 1.93μm(5.2%),在人类中为 2.79μm(4.1%)。在各时间点,各孔参数均无统计学差异(方差分析,P>0.05)。

结论

正常猕猴眼和人眼中的前筛板可在活体中持续成像。正常孔几何形状的时间点间变异性小,表明 AOSLO 成像可用于测量和跟踪青光眼进展过程中活体筛板孔的变化。

相似文献

2
In vivo imaging of lamina cribrosa pores by adaptive optics scanning laser ophthalmoscopy.
Invest Ophthalmol Vis Sci. 2012 Jun 26;53(7):4111-9. doi: 10.1167/iovs.11-7536.
3
Quantitative analysis of the lamina cribrosa in vivo using a scanning laser opthalmoscope.
Curr Eye Res. 1997 Jan;16(1):1-8. doi: 10.1076/ceyr.16.1.1.5114.
4
In Vivo Changes in Lamina Cribrosa Microarchitecture and Optic Nerve Head Structure in Early Experimental Glaucoma.
PLoS One. 2015 Jul 31;10(7):e0134223. doi: 10.1371/journal.pone.0134223. eCollection 2015.
6
Adaptive optics scanning laser ophthalmoscopy for in vivo imaging of lamina cribrosa.
J Opt Soc Am A Opt Image Sci Vis. 2007 May;24(5):1417-25. doi: 10.1364/josaa.24.001417.
7
Thickness of the lamina cribrosa and peripapillary sclera in Rhesus monkeys with nonglaucomatous or glaucomatous optic neuropathy.
Acta Ophthalmol. 2011 Aug;89(5):e423-7. doi: 10.1111/j.1755-3768.2011.02121.x. Epub 2011 Feb 18.
8
Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma.
Invest Ophthalmol Vis Sci. 2003 Feb;44(2):623-37. doi: 10.1167/iovs.01-1282.
9
3D modeling to characterize lamina cribrosa surface and pore geometries using in vivo images from normal and glaucomatous eyes.
Biomed Opt Express. 2013 Jun 14;4(7):1153-65. doi: 10.1364/BOE.4.001153. Print 2013 Jul 1.
10
In vivo characterization of lamina cribrosa pore morphology in primary open-angle glaucoma.
J Fr Ophtalmol. 2016 Mar;39(3):265-71. doi: 10.1016/j.jfo.2015.11.006. Epub 2016 Mar 14.

引用本文的文献

1
Proposing a Methodology for Axon-Centric Analysis of IOP-Induced Mechanical Insult.
Invest Ophthalmol Vis Sci. 2024 Nov 4;65(13):1. doi: 10.1167/iovs.65.13.1.
2
Current Status and Future Perspectives of Optic Nerve Imaging in Glaucoma.
J Clin Med. 2024 Mar 28;13(7):1966. doi: 10.3390/jcm13071966.
4
Twenty-five years of clinical applications using adaptive optics ophthalmoscopy [Invited].
Biomed Opt Express. 2022 Dec 20;14(1):387-428. doi: 10.1364/BOE.472274. eCollection 2023 Jan 1.
5
Low color temperature artificial lighting can slow myopia development: Long-term study using juvenile monkeys.
Zool Res. 2022 Mar 18;43(2):229-233. doi: 10.24272/j.issn.2095-8137.2021.401.
7
Modeling the biomechanics of the lamina cribrosa microstructure in the human eye.
Acta Biomater. 2021 Oct 15;134:357-378. doi: 10.1016/j.actbio.2021.07.010. Epub 2021 Jul 8.
8
Adaptive optics: principles and applications in ophthalmology.
Eye (Lond). 2021 Jan;35(1):244-264. doi: 10.1038/s41433-020-01286-z. Epub 2020 Nov 30.
10
In vivo assessment of foveal geometry and cone photoreceptor density and spacing in children.
Sci Rep. 2020 Jun 2;10(1):8942. doi: 10.1038/s41598-020-65645-2.

本文引用的文献

3
Intersubject variability of foveal cone photoreceptor density in relation to eye length.
Invest Ophthalmol Vis Sci. 2010 Dec;51(12):6858-67. doi: 10.1167/iovs.10-5499. Epub 2010 Aug 4.
5
A comparison of optic nerve head morphology viewed by spectral domain optical coherence tomography and by serial histology.
Invest Ophthalmol Vis Sci. 2010 Mar;51(3):1464-74. doi: 10.1167/iovs.09-3984. Epub 2009 Oct 29.
6
Correlation between local stress and strain and lamina cribrosa connective tissue volume fraction in normal monkey eyes.
Invest Ophthalmol Vis Sci. 2010 Jan;51(1):295-307. doi: 10.1167/iovs.09-4016. Epub 2009 Aug 20.
8
Remodeling of the connective tissue microarchitecture of the lamina cribrosa in early experimental glaucoma.
Invest Ophthalmol Vis Sci. 2009 Feb;50(2):681-90. doi: 10.1167/iovs.08-1792. Epub 2008 Sep 20.
10
Mechanical environment of the optic nerve head in glaucoma.
Optom Vis Sci. 2008 Jun;85(6):425-35. doi: 10.1097/OPX.0b013e31817841cb.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验