Suppr超能文献

优化帕金森病啮齿动物模型,以探索深部脑刺激的作用和机制。

Optimizing a rodent model of Parkinson's disease for exploring the effects and mechanisms of deep brain stimulation.

机构信息

Department of Neurology, University of Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany.

出版信息

Parkinsons Dis. 2011;2011:414682. doi: 10.4061/2011/414682. Epub 2011 Apr 5.

Abstract

Deep brain stimulation (DBS) has become a treatment for a growing number of neurological and psychiatric disorders, especially for therapy-refractory Parkinson's disease (PD). However, not all of the symptoms of PD are sufficiently improved in all patients, and side effects may occur. Further progress depends on a deeper insight into the mechanisms of action of DBS in the context of disturbed brain circuits. For this, optimized animal models have to be developed. We review not only charge transfer mechanisms at the electrode/tissue interface and strategies to increase the stimulation's energy-efficiency but also the electrochemical, electrophysiological, biochemical and functional effects of DBS. We introduce a hemi-Parkinsonian rat model for long-term experiments with chronically instrumented rats carrying a backpack stimulator and implanted platinum/iridium electrodes. This model is suitable for (1) elucidating the electrochemical processes at the electrode/tissue interface, (2) analyzing the molecular, cellular and behavioral stimulation effects, (3) testing new target regions for DBS, (4) screening for potential neuroprotective DBS effects, and (5) improving the efficacy and safety of the method. An outlook is given on further developments of experimental DBS, including the use of transgenic animals and the testing of closed-loop systems for the direct on-demand application of electric stimulation.

摘要

脑深部刺激 (DBS) 已成为越来越多神经和精神疾病的治疗方法,特别是对治疗抵抗性帕金森病 (PD)。然而,并非所有 PD 症状在所有患者中都得到充分改善,并且可能会出现副作用。进一步的进展取决于对 DBS 在受干扰的大脑回路中的作用机制有更深入的了解。为此,必须开发优化的动物模型。我们不仅回顾了电极/组织界面的电荷转移机制和提高刺激能量效率的策略,还回顾了电化学、电生理学、生物化学和 DBS 的功能效应。我们引入了一种半帕金森大鼠模型,用于对携带背包刺激器和植入铂/铱电极的慢性仪器化大鼠进行长期实验。该模型适用于 (1) 阐明电极/组织界面的电化学过程,(2) 分析分子、细胞和行为刺激效应,(3) 测试 DBS 的新靶区,(4) 筛选潜在的神经保护 DBS 效应,以及 (5) 提高该方法的疗效和安全性。本文还展望了实验性 DBS 的进一步发展,包括使用转基因动物和测试闭环系统,以直接按需应用电刺激。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68e7/3096058/f7281aeb27f9/PD2011-414682.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验