Division of Clinical Physiology, Royal Derby Hospital, University of Nottingham, Derby, England.
PLoS One. 2011;6(6):e20459. doi: 10.1371/journal.pone.0020459. Epub 2011 Jun 1.
Overcoming spaceflight-induced (patho)physiologic adaptations is a major challenge preventing long-term deep space exploration. RNA interference (RNAi) has emerged as a promising therapeutic for combating diseases on Earth; however the efficacy of RNAi in space is currently unknown.
Caenorhabditis elegans were prepared in liquid media on Earth using standard techniques and treated acutely with RNAi or a vector control upon arrival in Low Earth Orbit. After culturing during 4 and 8 d spaceflight, experiments were stopped by freezing at -80°C until analysis by mRNA and microRNA array chips, microscopy and Western blot on return to Earth. Ground controls (GC) on Earth were simultaneously grown under identical conditions.
After 8 d spaceflight, mRNA expression levels of components of the RNAi machinery were not different from that in GC (e.g., Dicer, Argonaute, Piwi; P>0.05). The expression of 228 microRNAs, of the 232 analysed, were also unaffected during 4 and 8 d spaceflight (P>0.05). In spaceflight, RNAi against green fluorescent protein (gfp) reduced chromosomal gfp expression in gonad tissue, which was not different from GC. RNAi against rbx-1 also induced abnormal chromosome segregation in the gonad during spaceflight as on Earth. Finally, culture in RNAi against lysosomal cathepsins prevented degradation of the muscle-specific α-actin protein in both spaceflight and GC conditions.
Treatment with RNAi works as effectively in the space environment as on Earth within multiple tissues, suggesting RNAi may provide an effective tool for combating spaceflight-induced pathologies aboard future long-duration space missions. Furthermore, this is the first demonstration that RNAi can be utilised to block muscle protein degradation, both on Earth and in space.
克服航天飞行引起的(病理)生理适应是阻止长期深空探索的主要挑战。RNA 干扰(RNAi)已成为治疗地球上疾病的一种有前途的治疗方法;然而,RNAi 在太空中的效果目前尚不清楚。
使用标准技术在地球上的液体培养基中准备秀丽隐杆线虫,并在到达近地轨道后立即用 RNAi 或载体对照物进行急性处理。在 4 天和 8 天的空间飞行中培养后,通过在 -80°C 下冷冻停止实验,直到返回地球后进行 mRNA 和 microRNA 芯片、显微镜和 Western blot 分析。同时,在相同条件下在地球上生长地面对照物(GC)。
在 8 天的空间飞行后,RNAi 机制的组成部分的 mRNA 表达水平与 GC 没有差异(例如,Dicer、Argonaute、Piwi;P>0.05)。在 4 天和 8 天的空间飞行中,也没有影响 232 个分析的 microRNA 中的 228 个(P>0.05)。在空间飞行中,针对绿色荧光蛋白(gfp)的 RNAi 降低了性腺组织中染色体 gfp 的表达,这与 GC 没有区别。在空间飞行中,针对 rbx-1 的 RNAi 也像在地球上一样诱导了性腺中的异常染色体分离。最后,在 RNAi 针对溶酶体组织蛋白酶的培养中,阻止了肌肉特异性 α-肌动蛋白蛋白在空间飞行和 GC 条件下的降解。
在多种组织中,RNAi 的治疗效果在空间环境中与地球上一样有效,这表明 RNAi 可能为未来长期太空任务中对抗航天飞行引起的病理学提供一种有效工具。此外,这是第一个证明 RNAi 可用于阻止地球上和太空中肌肉蛋白降解的实验。