Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
Cells. 2023 Oct 17;12(20):2470. doi: 10.3390/cells12202470.
Understanding and countering the well-established negative health consequences of spaceflight remains a primary challenge preventing safe deep space exploration. Targeted/personalized therapeutics are at the forefront of space medicine strategies, and cross-species molecular signatures now define the 'typical' spaceflight response. However, a lack of direct genotype-phenotype associations currently limits the robustness and, therefore, the therapeutic utility of putative mechanisms underpinning pathological changes in flight. We employed the worm as a validated model of space biology, combined with 'NemaFlex-S' microfluidic devices for assessing animal strength production as one of the most reproducible physiological responses to spaceflight. Wild-type and (BZ33) strains (a Duchenne muscular dystrophy (DMD) model for comparing predisposed muscle weak animals) were cultured on the International Space Station in chemically defined media before loading second-generation gravid adults into NemaFlex-S devices to assess individual animal strength. These same cultures were then frozen on orbit before returning to Earth for next-generation sequencing transcriptomic analysis. Neuromuscular strength was lower in flight ground controls (16.6% decline, < 0.05), with significantly more (23% less strength, < 0.01) affected than wild types. The transcriptional gene ontology signatures characterizing both strains of weaker animals in flight strongly corroborate previous results across species, enriched for upregulated stress response pathways and downregulated mitochondrial and cytoskeletal processes. Functional gene cluster analysis extended this to implicate decreased neuronal function, including abnormal calcium handling and acetylcholine signaling, in space-induced strength declines under the predicted control of UNC-89 and DAF-19 transcription factors. Finally, gene modules specifically altered in animals in flight again cluster to neuronal/neuromuscular pathways, suggesting strength loss in DMD comprises a strong neuronal component that predisposes these animals to exacerbated strength loss in space. Highly reproducible gene signatures are strongly associated with space-induced neuromuscular strength loss across species and neuronal changes in calcium/acetylcholine signaling require further study. These results promote targeted medical efforts towards and provide an in vivo model for safely sending animals and people into deep space in the near future.
了解和对抗太空飞行已确立的负面健康后果仍然是防止安全深空探索的主要挑战。靶向/个性化治疗是太空医学策略的前沿,跨物种分子特征现在定义了“典型”的太空飞行反应。然而,缺乏直接的基因型-表型关联目前限制了潜在机制的稳健性,因此,也限制了这些机制在飞行中导致病理变化的治疗效用。我们使用 作为太空生物学的验证模型,结合“NemaFlex-S”微流控设备来评估动物的力量产生,这是对太空飞行反应最具可重复性的生理反应之一。野生型和 (BZ33)品系(用于比较易患肌肉虚弱动物的杜氏肌营养不良症(DMD)模型)在国际空间站上的化学定义培养基中培养,然后将第二代孕成虫加载到 NemaFlex-S 设备中以评估个体动物的力量。这些相同的培养物随后在轨道上冷冻,然后返回地球进行下一代测序转录组分析。飞行中的神经肌肉力量较低 地面对照(下降 16.6%,<0.05),与野生型相比, 受影响的比例更高(强度下降 23%,<0.01)。飞行中较弱动物的两个品系的转录组基因本体特征强烈证实了跨物种的先前结果,富含上调的应激反应途径和下调的线粒体和细胞骨架过程。功能基因簇分析将这一结果扩展到表明,神经元功能下降,包括异常钙处理和乙酰胆碱信号,在太空引起的力量下降中受 UNC-89 和 DAF-19 转录因子的预测控制。最后,飞行中 动物中特定改变的基因模块再次聚类到神经元/神经肌肉途径,表明 DMD 动物的力量损失包含强烈的神经元成分,使这些动物在太空中更容易出现力量损失加剧。高度可重复的基因特征与跨物种的太空诱导神经肌肉力量损失和钙/乙酰胆碱信号中的神经元变化强烈相关,需要进一步研究。这些结果促进了有针对性的医疗努力,并为未来安全地将动物和人类送入深空提供了体内模型。
Cells. 2023-10-17
Life Sci Space Res (Amst). 2023-5
Proc Natl Acad Sci U S A. 2021-3-2
Mamm Genome. 2023-12
Proc Natl Acad Sci U S A. 2023-8-8
Front Physiol. 2023-7-14
iScience. 2023-6-20
NPJ Microgravity. 2023-6-21
NPJ Microgravity. 2023-6-12
Aerosp Med Hum Perform. 2023-6-1