Suppr超能文献

使用频域光学相干断层扫描技术研究青光眼的结构-功能关系

Structure-function relationship in glaucoma using spectral-domain optical coherence tomography.

作者信息

Rao Harsha L, Zangwill Linda M, Weinreb Robert N, Leite Mauro T, Sample Pamela A, Medeiros Felipe A

机构信息

Hamilton Glaucoma Center, University of California at San Diego, La Jolla, CA 92093-0946, USA.

出版信息

Arch Ophthalmol. 2011 Jul;129(7):864-71. doi: 10.1001/archophthalmol.2011.145.

Abstract

OBJECTIVES

To determine the structure-function relationship in glaucoma using spectral-domain optical coherence tomography (SDOCT)-derived structural measurements and to evaluate this relationship using a linear model.

METHODS

In a cross-sectional study, structure-function relationships were determined for all the participants in the DIGS (Diagnostic Innovations in Glaucoma Study) and the ADAGES (African Descent and Glaucoma Evaluation Study) who had undergone standard automated perimetry (SAP) and SDOCT within 6 months of each other. Strength of relationship was reported as coefficient of determination (R(2)). The relationship was also evaluated using a previously described linear model.

RESULTS

The results of 579 SAP and SDOCT examinations from 80 eyes of 47 control subjects, 199 eyes of 130 patients with suspected glaucoma, and 213 eyes of 146 patients with glaucoma were analyzed. The R(2) for the association between SAP total deviation and SDOCT variables ranged from 0.01 (P = .02) for the nasal rim area to 0.30 (P < .001) for inferior inner retinal thickness at the macula. The linear model fitted the data well.

CONCLUSIONS

The strongest structure-function associations using SDOCT were found for retinal nerve fiber layer measurements at arcuate areas and inner retinal thickness at the macula measurements. The linear model is useful in studying the structure-function relationship in glaucoma.

摘要

目的

利用频域光学相干断层扫描(SDOCT)得出的结构测量结果来确定青光眼的结构-功能关系,并使用线性模型评估这种关系。

方法

在一项横断面研究中,对青光眼诊断创新研究(DIGS)和非洲裔青光眼评估研究(ADAGES)中所有在彼此6个月内接受过标准自动视野计检查(SAP)和SDOCT检查的参与者确定其结构-功能关系。关系强度以决定系数(R²)报告。还使用先前描述的线性模型评估这种关系。

结果

分析了来自47名对照受试者的80只眼、130名疑似青光眼患者的199只眼和146名青光眼患者的213只眼的579次SAP和SDOCT检查结果。SAP总偏差与SDOCT变量之间关联的R²范围从鼻侧边缘区域的0.01(P = 0.02)到黄斑区下方视网膜内层厚度的0.30(P < 0.001)。线性模型对数据拟合良好。

结论

使用SDOCT发现弧形区域视网膜神经纤维层测量值和黄斑区视网膜内层厚度测量值的结构-功能关联最强。线性模型有助于研究青光眼的结构-功能关系。

相似文献

1
Structure-function relationship in glaucoma using spectral-domain optical coherence tomography.
Arch Ophthalmol. 2011 Jul;129(7):864-71. doi: 10.1001/archophthalmol.2011.145.
3
Diffuse glaucomatous structural and functional damage in the hemifield without significant pattern loss.
Arch Ophthalmol. 2009 Nov;127(11):1442-8. doi: 10.1001/archophthalmol.2009.196.
5
The African Descent and Glaucoma Evaluation Study (ADAGES): design and baseline data.
Arch Ophthalmol. 2009 Sep;127(9):1136-45. doi: 10.1001/archophthalmol.2009.187.
6
The Influence of Optical Coherence Tomography Measurements of Retinal Nerve Fiber Layer on Decision-Making in Glaucoma Diagnosis.
Curr Eye Res. 2017 Apr;42(4):575-582. doi: 10.1080/02713683.2016.1220591. Epub 2016 Oct 18.
9
A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma.
Invest Ophthalmol Vis Sci. 2010 Jul;51(7):3531-9. doi: 10.1167/iovs.09-4350. Epub 2010 Mar 5.

引用本文的文献

1
OCT-based diagnosis of glaucoma and glaucoma stages using explainable machine learning.
Sci Rep. 2025 Jan 28;15(1):3592. doi: 10.1038/s41598-025-87219-w.
3
Prediction of Visual Field Progression with Baseline and Longitudinal Structural Measurements Using Deep Learning.
Am J Ophthalmol. 2024 Jun;262:141-152. doi: 10.1016/j.ajo.2024.02.007. Epub 2024 Feb 12.
5
Deep Learning Estimation of 10-2 Visual Field Map Based on Macular Optical Coherence Tomography Angiography Measurements.
Am J Ophthalmol. 2024 Jan;257:187-200. doi: 10.1016/j.ajo.2023.09.014. Epub 2023 Sep 19.
6
Clinical Factors Associated With Long-Term OCT Variability in Glaucoma.
Am J Ophthalmol. 2023 Nov;255:98-106. doi: 10.1016/j.ajo.2023.07.011. Epub 2023 Jul 16.
7
Structure-function relationship in glaucoma: Optical coherence tomography en face imaging vs. red-free fundus photography.
Eye (Lond). 2023 Oct;37(14):2969-2976. doi: 10.1038/s41433-023-02452-9. Epub 2023 Feb 22.
8
Deep Learning Estimation of 10-2 Visual Field Map Based on Circumpapillary Retinal Nerve Fiber Layer Thickness Measurements.
Am J Ophthalmol. 2023 Feb;246:163-173. doi: 10.1016/j.ajo.2022.10.013. Epub 2022 Nov 1.

本文引用的文献

1
Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis.
Ophthalmology. 2010 Sep;117(9):1692-9, 1699.e1. doi: 10.1016/j.ophtha.2010.01.031. Epub 2010 May 20.
2
Linking structure and function in glaucoma.
Prog Retin Eye Res. 2010 Jul;29(4):249-71. doi: 10.1016/j.preteyeres.2010.02.001. Epub 2010 Mar 11.
5
Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study.
Ophthalmology. 2009 Jul;116(7):1257-63, 1263.e1-2. doi: 10.1016/j.ophtha.2009.04.013. Epub 2009 May 22.
6
Comparison of retinal nerve fiber layer thickness measured by Cirrus HD and Stratus optical coherence tomography.
Ophthalmology. 2009 Jul;116(7):1264-70, 1270.e1. doi: 10.1016/j.ophtha.2008.12.045. Epub 2009 May 8.
7
Comparison of retinal nerve fiber layer measurements using time domain and spectral domain optical coherent tomography.
Ophthalmology. 2009 Jul;116(7):1271-7. doi: 10.1016/j.ophtha.2008.12.032. Epub 2009 Apr 22.
8
Agreement between spectral-domain and time-domain OCT for measuring RNFL thickness.
Br J Ophthalmol. 2009 Jun;93(6):775-81. doi: 10.1136/bjo.2008.150698. Epub 2009 Mar 19.
10
Reproducibility of nerve fiber layer thickness measurements using 3D fourier-domain OCT.
Invest Ophthalmol Vis Sci. 2008 Dec;49(12):5386-91. doi: 10.1167/iovs.07-1435. Epub 2008 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验