Suppr超能文献

在体荧光漂白后恢复实验区分愈合过程中小血管通透性的时相变化。

Temporal changes in microvessel leakiness during wound healing discriminated by in vivo fluorescence recovery after photobleaching.

机构信息

Centre for Molecular Biosciences, University of Ulster, Cromore Road, Coleraine, Co. Londonderry, UK.

出版信息

J Physiol. 2011 Oct 1;589(Pt 19):4681-96. doi: 10.1113/jphysiol.2011.208355. Epub 2011 Jul 18.

Abstract

Regeneration of injured tissue is a dynamic process, critically dependent on the formation of new blood vessels and restructuring of the nascent plexus. Endothelial barrier function, a functional correlate of vascular restructuring and maturation, was quantified via intravital microscopic analysis of 150 kDa FITC-dextran-perfused blood vessels within discrete wounds created in the panniculus carnosus (PC) muscle of dorsal skinfold chamber (DSC) preparations in mice. Time to recovery of half-peak fluorescence intensity (t(1/2)) within individual vessel segments in three functional regions of the wound (pre-existing vessels, angiogenic plexus and blind-ended vessels (BEVs)) was quantified using in vivo fluorescence recovery after photobleaching (FRAP) and linear regression analysis of recovery profiles. Plasma flux across the walls of new vessel segments, particularly BEVs, was greater than that of pre-existing vessels at days 5-7 after injury (P < 0.05). TNP-470 reduced the permeability of BEVs at the leading edge of the advancing vascular plexus as measured by the decrease in luminal t(1/2) (P < 0.05), confirming the utility of FRAP as a quantitative measure of endothelial barrier function. Furthermore, these data are suggestive of a role for TNP-470 in selection for less leaky vascular segments within healing wounds. Increased FITC-dextran leakage was observed from pre-existing vessels after treatment with TNP-470 (P < 0.05), consistent with induction of transient vascular damage, although the significance of this finding is unclear. Using in vivo FRAP this study demonstrates the relationship between temporal changes in microvascular macromolecular flux and the morphology of maturing vascular segments. This combination of techniques may be useful to assess the therapeutic potential of angiogenic agents in restoring pre-injury levels of endothelial barrier function, following the establishment of a functional vascular plexus such as in models of wounding or tumour development.

摘要

组织损伤的再生是一个动态过程,严重依赖于新血管的形成和新生丛的重构。血管重构和成熟的功能相关物是内皮屏障功能,通过在小鼠背部皮肤囊(DSC)制备的背阔肌(PC)肌肉中离散伤口内用 150 kDa FITC-葡聚糖灌注的血管进行活体显微镜分析来量化。使用活体荧光恢复后漂白(FRAP)和恢复曲线的线性回归分析来量化个体血管段中半峰荧光强度(t(1/2))恢复的时间,在伤口的三个功能区域(预先存在的血管、血管生成丛和盲端血管(BEVs))内的单个血管段。在损伤后 5-7 天,新血管段,特别是 BEVs,的血浆通量超过预先存在的血管(P < 0.05)。TNP-470 通过减少管腔 t(1/2)来减少血管生成丛中前沿的 BEVs 的通透性(P < 0.05),证实了 FRAP 作为内皮屏障功能定量测量的有用性。此外,这些数据表明 TNP-470 在选择愈合伤口中渗漏性较低的血管段方面具有作用。在用 TNP-470 处理后,预先存在的血管中观察到 FITC-葡聚糖渗漏增加(P < 0.05),这与诱导短暂性血管损伤一致,尽管这一发现的意义尚不清楚。本研究通过活体 FRAP 证明了微血管大分子通量的时间变化与成熟血管段形态之间的关系。这种技术组合可能有助于评估血管生成剂在建立功能性血管丛(如在创伤或肿瘤发展模型中)后恢复内皮屏障功能的治疗潜力。

相似文献

1
Temporal changes in microvessel leakiness during wound healing discriminated by in vivo fluorescence recovery after photobleaching.
J Physiol. 2011 Oct 1;589(Pt 19):4681-96. doi: 10.1113/jphysiol.2011.208355. Epub 2011 Jul 18.
2
Experimental and theoretical modelling of blind-ended vessels within a developing angiogenic plexus.
Microvasc Res. 2008 Nov;76(3):161-8. doi: 10.1016/j.mvr.2008.06.005. Epub 2008 Jul 15.
3
GM-CSF ameliorates microvascular barrier integrity via pericyte-derived Ang-1 in wound healing.
Wound Repair Regen. 2017 Nov;25(6):933-943. doi: 10.1111/wrr.12608. Epub 2018 Feb 16.
4
Perfusion of single tumor microvessels: application to vascular permeability measurement.
Microcirculation. 1996 Dec;3(4):349-57. doi: 10.3109/10739689609148307.
5
Dynamics of angiogenesis during wound healing: a coupled in vivo and in silico study.
Microcirculation. 2011 Apr;18(3):183-97. doi: 10.1111/j.1549-8719.2010.00076.x.
7
Tumor cytotoxicity and endothelial Rac inhibition induced by TNP-470 in anaplastic thyroid cancer.
Mol Cancer Ther. 2007 Apr;6(4):1329-37. doi: 10.1158/1535-7163.MCT-06-0554.
10
Intravital Imaging of Vascular Permeability by Two-Photon Microscopy.
Methods Mol Biol. 2021;2223:151-157. doi: 10.1007/978-1-0716-1001-5_11.

引用本文的文献

1
Understanding the in vivo Fate of Advanced Materials by Imaging.
Adv Funct Mater. 2020 Sep 10;30(37). doi: 10.1002/adfm.201910369. Epub 2020 Apr 6.
2
Multiphoton intravital microscopy of rodents.
Nat Rev Methods Primers. 2022;2. doi: 10.1038/s43586-022-00168-w. Epub 2022 Nov 10.
3
Non-invasive longitudinal imaging of VEGF-induced microvascular alterations in skin wounds.
Theranostics. 2022 Jan 1;12(2):558-573. doi: 10.7150/thno.65287. eCollection 2022.
4
Dorsal skinfold chamber models in mice.
GMS Interdiscip Plast Reconstr Surg DGPW. 2017 Jul 10;6:Doc10. doi: 10.3205/iprs000112. eCollection 2017.
6
Cardiac aging is initiated by matrix metalloproteinase-9-mediated endothelial dysfunction.
Am J Physiol Heart Circ Physiol. 2014 May 15;306(10):H1398-407. doi: 10.1152/ajpheart.00090.2014. Epub 2014 Mar 21.
7
FRAP in pharmaceutical research: practical guidelines and applications in drug delivery.
Pharm Res. 2014 Feb;31(2):255-70. doi: 10.1007/s11095-013-1146-9. Epub 2013 Sep 10.
8
Real-time visualization and quantitation of vascular permeability in vivo: implications for drug delivery.
PLoS One. 2012;7(3):e33760. doi: 10.1371/journal.pone.0033760. Epub 2012 Mar 29.
9
Transforming Growth Factor-β and Endoglin Signaling Orchestrate Wound Healing.
Front Physiol. 2011 Nov 29;2:89. doi: 10.3389/fphys.2011.00089. eCollection 2011.

本文引用的文献

1
Dynamics of angiogenesis during wound healing: a coupled in vivo and in silico study.
Microcirculation. 2011 Apr;18(3):183-97. doi: 10.1111/j.1549-8719.2010.00076.x.
2
The wound healing process: an overview of the cellular and molecular mechanisms.
J Int Med Res. 2009 Sep-Oct;37(5):1528-42. doi: 10.1177/147323000903700531.
3
Regulation of angiogenesis: apoptotic cues from the ECM.
Oncogene. 2008 Oct 20;27(48):6285-98. doi: 10.1038/onc.2008.304.
4
Experimental and theoretical modelling of blind-ended vessels within a developing angiogenic plexus.
Microvasc Res. 2008 Nov;76(3):161-8. doi: 10.1016/j.mvr.2008.06.005. Epub 2008 Jul 15.
5
Intravital insights in skin wound healing using the mouse dorsal skin fold chamber.
J Anat. 2007 Dec;211(6):810-8. doi: 10.1111/j.1469-7580.2007.00822.x. Epub 2007 Nov 13.
6
A role for the endothelial glycocalyx in regulating microvascular permeability in diabetes mellitus.
Cell Biochem Biophys. 2007;49(2):65-72. doi: 10.1007/s12013-007-0041-6.
7
Tumor cytotoxicity and endothelial Rac inhibition induced by TNP-470 in anaplastic thyroid cancer.
Mol Cancer Ther. 2007 Apr;6(4):1329-37. doi: 10.1158/1535-7163.MCT-06-0554.
8
Transport across the endothelium: regulation of endothelial permeability.
Handb Exp Pharmacol. 2006(176 Pt 1):107-44. doi: 10.1007/3-540-32967-6_4.
9
Making the cut: protease-mediated regulation of angiogenesis.
Exp Cell Res. 2006 Mar 10;312(5):608-22. doi: 10.1016/j.yexcr.2005.11.022. Epub 2006 Jan 24.
10
Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro.
J Cell Sci. 2005 Oct 15;118(Pt 20):4731-9. doi: 10.1242/jcs.02605. Epub 2005 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验