Suppr超能文献

从尖峰序列的最大似然估计广义积分点火神经元的参数。

Estimating parameters of generalized integrate-and-fire neurons from the maximum likelihood of spike trains.

机构信息

Department of Neuroscience and Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

Neural Comput. 2011 Nov;23(11):2833-67. doi: 10.1162/NECO_a_00196. Epub 2011 Aug 18.

Abstract

When a neuronal spike train is observed, what can we deduce from it about the properties of the neuron that generated it? A natural way to answer this question is to make an assumption about the type of neuron, select an appropriate model for this type, and then choose the model parameters as those that are most likely to generate the observed spike train. This is the maximum likelihood method. If the neuron obeys simple integrate-and-fire dynamics, Paninski, Pillow, and Simoncelli (2004) showed that its negative log-likelihood function is convex and that, at least in principle, its unique global minimum can thus be found by gradient descent techniques. Many biological neurons are, however, known to generate a richer repertoire of spiking behaviors than can be explained in a simple integrate-and-fire model. For instance, such a model retains only an implicit (through spike-induced currents), not an explicit, memory of its input; an example of a physiological situation that cannot be explained is the absence of firing if the input current is increased very slowly. Therefore, we use an expanded model (Mihalas & Niebur, 2009 ), which is capable of generating a large number of complex firing patterns while still being linear. Linearity is important because it maintains the distribution of the random variables and still allows maximum likelihood methods to be used. In this study, we show that although convexity of the negative log-likelihood function is not guaranteed for this model, the minimum of this function yields a good estimate for the model parameters, in particular if the noise level is treated as a free parameter. Furthermore, we show that a nonlinear function minimization method (r-algorithm with space dilation) usually reaches the global minimum.

摘要

当观察到神经元尖峰序列时,我们能从中推断出产生它的神经元的哪些性质?回答这个问题的一种自然方法是对神经元的类型做出假设,为该类型选择一个合适的模型,然后选择最有可能产生所观察到的尖峰序列的模型参数。这就是最大似然法。如果神经元遵循简单的积分点火动力学,Paninski、 Pillow 和 Simoncelli(2004)表明,其负对数似然函数是凸的,因此,至少在原则上,可以通过梯度下降技术找到其唯一的全局最小值。然而,许多生物神经元产生的放电行为比简单的积分点火模型所能解释的要丰富得多。例如,这样的模型只保留了对输入的隐式(通过尖峰诱导电流)记忆,而不是显式记忆;一个无法用这种模型解释的生理情况的例子是,如果输入电流增加得非常缓慢,就不会产生放电。因此,我们使用一个扩展的模型(Mihalas 和 Niebur,2009),它能够产生大量复杂的放电模式,同时仍然保持线性。线性很重要,因为它保持了随机变量的分布,并且仍然允许使用最大似然法。在这项研究中,我们表明,尽管这个模型的负对数似然函数的凸性不能保证,但该函数的最小值可以很好地估计模型参数,特别是如果将噪声水平视为一个自由参数。此外,我们表明,一种非线性函数最小化方法(带空间扩张的 r-算法)通常可以达到全局最小值。

相似文献

1
Estimating parameters of generalized integrate-and-fire neurons from the maximum likelihood of spike trains.
Neural Comput. 2011 Nov;23(11):2833-67. doi: 10.1162/NECO_a_00196. Epub 2011 Aug 18.
3
Silicon modeling of the Mihalaş-Niebur neuron.
IEEE Trans Neural Netw. 2011 Dec;22(12):1915-27. doi: 10.1109/TNN.2011.2167020. Epub 2011 Oct 10.
4
Robust point-process Granger causality analysis in presence of exogenous temporal modulations and trial-by-trial variability in spike trains.
PLoS Comput Biol. 2021 Jan 25;17(1):e1007675. doi: 10.1371/journal.pcbi.1007675. eCollection 2021 Jan.
6
What causes a neuron to spike?
Neural Comput. 2003 Aug;15(8):1789-807. doi: 10.1162/08997660360675044.
7
A generalized linear integrate-and-fire neural model produces diverse spiking behaviors.
Neural Comput. 2009 Mar;21(3):704-18. doi: 10.1162/neco.2008.12-07-680.
8
The chronotron: a neuron that learns to fire temporally precise spike patterns.
PLoS One. 2012;7(8):e40233. doi: 10.1371/journal.pone.0040233. Epub 2012 Aug 6.
9
Optimization methods for spiking neurons and networks.
IEEE Trans Neural Netw. 2010 Dec;21(12):1950-62. doi: 10.1109/TNN.2010.2083685. Epub 2010 Oct 18.
10
Reconstruction of the input signal of the leaky integrate-and-fire neuronal model from its interspike intervals.
Biol Cybern. 2016 Feb;110(1):3-15. doi: 10.1007/s00422-015-0671-5. Epub 2015 Dec 12.

引用本文的文献

1
Theta-gamma coupling: nonlinearity as a universal cross-frequency coupling mechanism.
Front Behav Neurosci. 2025 Jun 23;19:1553000. doi: 10.3389/fnbeh.2025.1553000. eCollection 2025.
2
Estimation of the firing behaviour of a complete motoneuron pool by combining electromyography signal decomposition and realistic motoneuron modelling.
PLoS Comput Biol. 2022 Sep 29;18(9):e1010556. doi: 10.1371/journal.pcbi.1010556. eCollection 2022 Sep.
3
Mathematical relationships between spinal motoneuron properties.
Elife. 2022 Jul 18;11:e76489. doi: 10.7554/eLife.76489.
4
Synchronization of Electrically Coupled Resonate-and-Fire Neurons.
SIAM J Appl Dyn Syst. 2019;18(3):1643-1693. doi: 10.1137/18m1197412. Epub 2019 Sep 26.
5
Inferring and validating mechanistic models of neural microcircuits based on spike-train data.
Nat Commun. 2019 Oct 30;10(1):4933. doi: 10.1038/s41467-019-12572-0.
6
Generalized leaky integrate-and-fire models classify multiple neuron types.
Nat Commun. 2018 Feb 19;9(1):709. doi: 10.1038/s41467-017-02717-4.
7
Responses of Leaky Integrate-and-Fire Neurons to a Plurality of Stimuli in Their Receptive Fields.
J Math Neurosci. 2016 Dec;6(1):8. doi: 10.1186/s13408-016-0040-2. Epub 2016 May 23.
9
Parameter estimation of a spiking silicon neuron.
IEEE Trans Biomed Circuits Syst. 2012 Apr;6(2):133-41. doi: 10.1109/TBCAS.2011.2182650.
10
A simple model of mechanotransduction in primate glabrous skin.
J Neurophysiol. 2013 Mar;109(5):1350-9. doi: 10.1152/jn.00395.2012. Epub 2012 Dec 12.

本文引用的文献

1
Conveying tactile feedback in sensorized hand neuroprostheses using a biofidelic model of mechanotransduction.
IEEE Trans Biomed Circuits Syst. 2009 Dec;3(6):398-404. doi: 10.1109/TBCAS.2009.2032396.
2
Improved integral equation solution for the first passage time of leaky integrate-and-fire neurons.
Neural Comput. 2011 Feb;23(2):421-34. doi: 10.1162/NECO_a_00078. Epub 2010 Nov 24.
3
Optimization methods for spiking neurons and networks.
IEEE Trans Neural Netw. 2010 Dec;21(12):1950-62. doi: 10.1109/TNN.2010.2083685. Epub 2010 Oct 18.
4
Automatic fitting of spiking neuron models to electrophysiological recordings.
Front Neuroinform. 2010 Mar 5;4:2. doi: 10.3389/neuro.11.002.2010. eCollection 2010.
5
Neuroscience. How good are neuron models?
Science. 2009 Oct 16;326(5951):379-80. doi: 10.1126/science.1181936.
6
A generalized linear integrate-and-fire neural model produces diverse spiking behaviors.
Neural Comput. 2009 Mar;21(3):704-18. doi: 10.1162/neco.2008.12-07-680.
7
Exact solutions for rate and synchrony in recurrent networks of coincidence detectors.
Neural Comput. 2008 Nov;20(11):2637-61. doi: 10.1162/neco.2008.07-07-570.
8
Simple model of spiking neurons.
IEEE Trans Neural Netw. 2003;14(6):1569-72. doi: 10.1109/TNN.2003.820440.
9
A benchmark test for a quantitative assessment of simple neuron models.
J Neurosci Methods. 2008 Apr 30;169(2):417-24. doi: 10.1016/j.jneumeth.2007.11.006. Epub 2007 Nov 19.
10
Event-driven simulations of nonlinear integrate-and-fire neurons.
Neural Comput. 2007 Dec;19(12):3226-38. doi: 10.1162/neco.2007.19.12.3226.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验