Suppr超能文献

肾脏疾病的系统生物学。

Systems biology of kidney diseases.

机构信息

Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.

出版信息

Kidney Int. 2012 Jan;81(1):22-39. doi: 10.1038/ki.2011.314. Epub 2011 Aug 31.

Abstract

Kidney diseases manifest in progressive loss of renal function, which ultimately leads to complete kidney failure. The mechanisms underlying the origins and progression of kidney diseases are not fully understood. Multiple factors involved in the pathogenesis of kidney diseases have made the traditional candidate gene approach of limited value toward full understanding of the molecular mechanisms of these diseases. A systems biology approach that integrates computational modeling with large-scale data gathering of the molecular changes could be useful in identifying the multiple interacting genes and their products that drive kidney diseases. Advances in biotechnology now make it possible to gather large data sets to characterize the role of the genome, epigenome, transcriptome, proteome, and metabolome in kidney diseases. When combined with computational analyses, these experimental approaches will provide a comprehensive understanding of the underlying biological processes. Multiscale analysis that connects the molecular interactions and cell biology of different kidney cells to renal physiology and pathology can be utilized to identify modules of biological and clinical importance that are perturbed in disease processes. This integration of experimental approaches and computational modeling is expected to generate new knowledge that can help to identify marker sets to guide the diagnosis, monitor disease progression, and identify new therapeutic targets.

摘要

肾脏疾病表现为肾功能进行性丧失,最终导致完全肾衰竭。肾脏疾病的起源和进展的机制尚未完全阐明。参与肾脏疾病发病机制的多种因素使得传统的候选基因方法对于充分理解这些疾病的分子机制的价值有限。一种将计算建模与大规模分子变化数据收集相结合的系统生物学方法,可能有助于识别驱动肾脏疾病的多个相互作用基因及其产物。生物技术的进步现在使得收集大量数据集以表征基因组、表观基因组、转录组、蛋白质组和代谢组在肾脏疾病中的作用成为可能。当与计算分析相结合时,这些实验方法将提供对潜在生物学过程的全面理解。将不同肾脏细胞的分子相互作用和细胞生物学与肾脏生理学和病理学联系起来的多尺度分析,可以用于识别在疾病过程中受到干扰的具有生物学和临床重要性的模块。这种实验方法和计算建模的整合预计将产生新的知识,有助于识别标记物集,以指导诊断、监测疾病进展和确定新的治疗靶点。

相似文献

1
Systems biology of kidney diseases.肾脏疾病的系统生物学。
Kidney Int. 2012 Jan;81(1):22-39. doi: 10.1038/ki.2011.314. Epub 2011 Aug 31.
4
Systems Biology and Kidney Disease.系统生物学与肾脏疾病。
Clin J Am Soc Nephrol. 2020 May 7;15(5):695-703. doi: 10.2215/CJN.09990819. Epub 2020 Jan 28.
5
Multi-omics study for interpretation of genome-wide association study.多组学研究用于解释全基因组关联研究。
J Hum Genet. 2021 Jan;66(1):3-10. doi: 10.1038/s10038-020-00842-5. Epub 2020 Sep 18.
6
The primary glomerulonephritides: a systems biology approach.原发性肾小球肾炎:系统生物学方法。
Nat Rev Nephrol. 2013 Sep;9(9):500-12. doi: 10.1038/nrneph.2013.129. Epub 2013 Jul 16.

引用本文的文献

1
Chronic kidney disease and gut microbiota.慢性肾脏病与肠道微生物群
Heliyon. 2023 Aug 7;9(8):e18991. doi: 10.1016/j.heliyon.2023.e18991. eCollection 2023 Aug.
3
Revisiting the therapeutic potential of tocotrienol.重新审视生育三烯酚的治疗潜力。
Biofactors. 2022 Jul;48(4):813-856. doi: 10.1002/biof.1873. Epub 2022 Jun 20.
10
A Systems-Level View of Renal Metabolomics.肾脏代谢组学的系统水平观察。
Semin Nephrol. 2018 Mar;38(2):142-150. doi: 10.1016/j.semnephrol.2018.01.005.

本文引用的文献

1
Genome-wide association studies.全基因组关联研究
Methods Mol Biol. 2011;713:89-103. doi: 10.1007/978-1-60327-416-6_7.
4
Proteomics database in chronic kidney disease.慢性肾病的蛋白质组学数据库。
Adv Chronic Kidney Dis. 2010 Nov;17(6):487-92. doi: 10.1053/j.ackd.2010.09.005.
5
Fine tuning gene expression: the epigenome.精确调控基因表达:表观基因组。
Semin Nephrol. 2010 Sep;30(5):468-76. doi: 10.1016/j.semnephrol.2010.07.004.
9
Exome sequencing: the sweet spot before whole genomes.外显子组测序:全基因组测序前的甜蜜点。
Hum Mol Genet. 2010 Oct 15;19(R2):R145-51. doi: 10.1093/hmg/ddq333. Epub 2010 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验