Suppr超能文献

在微流控通道内生长的体外内皮衬里的特性。

Characterization of in vitro endothelial linings grown within microfluidic channels.

机构信息

Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA.

出版信息

Tissue Eng Part A. 2011 Dec;17(23-24):2965-71. doi: 10.1089/ten.tea.2010.0371. Epub 2011 Sep 6.

Abstract

In vivo, endothelial cells grow on the inner surface of blood vessels and are shaped to conform to the vessel's geometry. In the smallest vessels this shape entails substantial bending within each cell. Microfabricated channels can replicate these small-scale geometries, but endothelial cells grown within them have not been fully characterized. In particular, the presence of focal adhesions and adherens junctions in endothelial cells grown in microchannels with corners has not been confirmed. We have fabricated square microfluidic channels (50 μm wide, 50 μm deep) and semicircular microfluidic channels (60 μm wide, 45 μm deep) in polydimethylsiloxane and cultured human umbilical vein endothelial cells (HUVEC) within them. Immunofluorescent staining and three-dimensional reconstruction of image stacks taken with confocal microscopy confirmed that HUVEC are capable of forming adherens junctions on all channel walls in both channel geometries, including the sidewalls of square profile channels. The presence of shear stress is critical for the cells to form focal adhesions within both channel geometries. Shear stress is also responsible for the conforming of HUVEC to the channel walls and produces a square cross-sectional geometry of in vitro endothelial linings within square profile channels. Thus, geometry and applied shear stress are important design criteria for the development of in vitro endothelial linings of microvessels.

摘要

在体内,内皮细胞生长在血管的内表面,并被塑造为符合血管的几何形状。在最小的血管中,这种形状需要每个细胞内的大量弯曲。微制造的通道可以复制这些小规模的几何形状,但在其中生长的内皮细胞尚未得到充分的表征。特别是,在具有拐角的微通道中生长的内皮细胞中是否存在粘着斑和粘着连接尚未得到证实。我们已经在聚二甲基硅氧烷中制造了方形微流控通道(50μm 宽,50μm 深)和半圆形微流控通道(60μm 宽,45μm 深),并在其中培养了人脐静脉内皮细胞(HUVEC)。免疫荧光染色和共聚焦显微镜拍摄的图像堆栈的三维重建证实,HUVEC 能够在两种通道几何形状的所有通道壁上形成粘着连接,包括方形轮廓通道的侧壁。剪切应力的存在对于细胞在两种通道几何形状中形成粘着斑至关重要。剪切应力也负责将 HUVEC 顺应通道壁,并在方形轮廓通道内产生体外内皮衬里的方形横截面几何形状。因此,几何形状和施加的剪切应力是开发微血管体外内皮衬里的重要设计标准。

相似文献

1

引用本文的文献

1
Engineering in vitro vascular microsystems.体外血管微系统工程
Microsyst Nanoeng. 2025 May 22;11(1):100. doi: 10.1038/s41378-025-00956-w.
5
Arched microfluidic channel for the promotion of axonal growth performance.用于促进轴突生长性能的拱形微流体通道。
iScience. 2024 Sep 4;27(10):110885. doi: 10.1016/j.isci.2024.110885. eCollection 2024 Oct 18.
8
Bio-inspired microfluidics: A review.受生物启发的微流体学:综述
Biomicrofluidics. 2023 Sep 27;17(5):051503. doi: 10.1063/5.0161809. eCollection 2023 Sep.
9
Pumped and pumpless microphysiological systems to study (nano)therapeutics.用于研究(纳米)治疗药物的有泵和无泵微生理系统。
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023 Sep-Oct;15(5):e1911. doi: 10.1002/wnan.1911. Epub 2023 Jul 18.

本文引用的文献

1
Focal adhesion kinase and endothelial cell apoptosis.黏着斑激酶与血管内皮细胞凋亡。
Microvasc Res. 2012 Jan;83(1):56-63. doi: 10.1016/j.mvr.2011.05.003. Epub 2011 May 19.
5
Topological basis for the robust distribution of blood to rodent neocortex.拓扑基础为啮齿动物新皮质中血液的稳健分布。
Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12670-5. doi: 10.1073/pnas.1007239107. Epub 2010 Jun 28.
6
PECAM-1: conflicts of interest in inflammation.PECAM-1:炎症中的利益冲突。
Life Sci. 2010 Jul 17;87(3-4):69-82. doi: 10.1016/j.lfs.2010.06.001. Epub 2010 Jun 10.
10
Environmental sensing through focal adhesions.通过粘着斑进行环境感知。
Nat Rev Mol Cell Biol. 2009 Jan;10(1):21-33. doi: 10.1038/nrm2593.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验