Suppr超能文献

基于自由基的S-腺苷甲硫氨酸(SAM)依赖性甲基化的机制多样性

Mechanistic diversity of radical S-adenosylmethionine (SAM)-dependent methylation.

作者信息

Bauerle Matthew R, Schwalm Erica L, Booker Squire J

机构信息

From the Department of Chemistry and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802.

From the Department of Chemistry and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802

出版信息

J Biol Chem. 2015 Feb 13;290(7):3995-4002. doi: 10.1074/jbc.R114.607044. Epub 2014 Dec 4.

Abstract

Radical S-adenosylmethionine (SAM) enzymes use the oxidizing power of a 5'-deoxyadenosyl 5'-radical to initiate an amazing array of transformations, usually through the abstraction of a target substrate hydrogen atom. A common reaction of radical SAM (RS) enzymes is the methylation of unactivated carbon or phosphorous atoms found in numerous primary and secondary metabolites, as well as in proteins, sugars, lipids, and RNA. However, neither the chemical mechanisms by which these unactivated atoms obtain methyl groups nor the actual methyl donors are conserved. In fact, RS methylases have been grouped into three classes based on protein architecture, cofactor requirement, and predicted mechanism of catalysis. Class A methylases use two cysteine residues to methylate sp(2)-hybridized carbon centers. Class B methylases require a cobalamin cofactor to methylate both sp(2)-hybridized and sp(3)-hybridized carbon centers as well as phosphinate phosphorous atoms. Class C methylases share significant sequence homology with the RS enzyme, HemN, and may bind two SAM molecules simultaneously to methylate sp(2)-hybridized carbon centers. Lastly, we describe a new class of recently discovered RS methylases. These Class D methylases, unlike Class A, B, and C enzymes, which use SAM as the source of the donated methyl carbon, are proposed to methylate sp(2)-hybridized carbon centers using methylenetetrahydrofolate as the source of the appended methyl carbon.

摘要

自由基S-腺苷甲硫氨酸(SAM)酶利用5'-脱氧腺苷5'-自由基的氧化能力引发一系列惊人的转化反应,通常是通过夺取目标底物的氢原子来实现。自由基SAM(RS)酶的一个常见反应是对众多初级和次级代谢产物以及蛋白质、糖类、脂质和RNA中未活化的碳原子或磷原子进行甲基化。然而,这些未活化原子获取甲基的化学机制以及实际的甲基供体并不保守。事实上,RS甲基化酶已根据蛋白质结构、辅因子需求和预测的催化机制分为三类。A类甲基化酶利用两个半胱氨酸残基对sp(2)杂化的碳中心进行甲基化。B类甲基化酶需要钴胺素辅因子来对sp(2)杂化和sp(3)杂化的碳中心以及次膦酸磷原子进行甲基化。C类甲基化酶与RS酶HemN具有显著的序列同源性,可能同时结合两个SAM分子以对sp(2)杂化的碳中心进行甲基化。最后,我们描述了一类新发现的RS甲基化酶。这些D类甲基化酶与使用SAM作为甲基碳供体来源的A、B和C类酶不同,它们被认为使用亚甲基四氢叶酸作为附加甲基碳的来源,对sp(2)杂化的碳中心进行甲基化。

相似文献

1
Mechanistic diversity of radical S-adenosylmethionine (SAM)-dependent methylation.
J Biol Chem. 2015 Feb 13;290(7):3995-4002. doi: 10.1074/jbc.R114.607044. Epub 2014 Dec 4.
2
Radical-mediated enzymatic methylation: a tale of two SAMS.
Acc Chem Res. 2012 Apr 17;45(4):555-64. doi: 10.1021/ar200202c. Epub 2011 Nov 18.
3
Surprise! A hidden B cofactor catalyzes a radical methylation.
J Biol Chem. 2019 Aug 2;294(31):11726-11727. doi: 10.1074/jbc.H119.009976.
4
Introduction to the thematic minireview series on radical S-adenosylmethionine (SAM) enzymes.
J Biol Chem. 2015 Feb 13;290(7):3962-3. doi: 10.1074/jbc.R114.630251. Epub 2014 Dec 4.
6
Radical SAM-mediated methylation reactions.
Curr Opin Chem Biol. 2013 Aug;17(4):597-604. doi: 10.1016/j.cbpa.2013.05.032. Epub 2013 Jul 5.
7
Enhanced Solubilization of Class B Radical S-Adenosylmethionine Methylases by Improved Cobalamin Uptake in Escherichia coli.
Biochemistry. 2018 Mar 6;57(9):1475-1490. doi: 10.1021/acs.biochem.7b01205. Epub 2018 Feb 19.
8
Radical SAM enzymes in methylation and methylthiolation.
Metallomics. 2012 Nov;4(11):1149-54. doi: 10.1039/c2mt20136d. Epub 2012 Sep 19.
9
A radically different mechanism for S-adenosylmethionine-dependent methyltransferases.
Science. 2011 Apr 29;332(6029):604-7. doi: 10.1126/science.1200877. Epub 2011 Mar 17.
10
Paramagnetic intermediates generated by radical S-adenosylmethionine (SAM) enzymes.
Acc Chem Res. 2014 Aug 19;47(8):2235-43. doi: 10.1021/ar400235n. Epub 2014 Jul 3.

引用本文的文献

1
Radical Fluoromethylation Enabled by Cobalamin-Dependent Radical SAM Enzymes.
ACS Bio Med Chem Au. 2025 May 6;5(3):464-474. doi: 10.1021/acsbiomedchemau.5c00062. eCollection 2025 Jun 18.
4
Visible-light-mediated site-selective C(sp)-H alkylation of tropones facilitates semi-synthesis of cephafortunoids A and B.
Chem Sci. 2025 Apr 10;16(20):8836-8844. doi: 10.1039/d5sc01006c. eCollection 2025 May 21.
6
Molecular basis of foreign DNA recognition by BREX anti-phage immunity system.
Nat Commun. 2025 Feb 20;16(1):1825. doi: 10.1038/s41467-025-57006-2.
7
Structural Evidence for DUF512 as a Radical -Adenosylmethionine Cobalamin-Binding Domain.
ACS Bio Med Chem Au. 2024 Oct 23;4(6):319-330. doi: 10.1021/acsbiomedchemau.4c00067. eCollection 2024 Dec 18.
8
Function and Evolution of the Plant MES Family of Methylesterases.
Plants (Basel). 2024 Nov 29;13(23):3364. doi: 10.3390/plants13233364.
9
Initiation, Propagation, and Termination in the Chemistry of Radical SAM Enzymes.
Biochemistry. 2024 Dec 17;63(24):3161-3183. doi: 10.1021/acs.biochem.4c00518. Epub 2024 Dec 3.
10
Anaerobic benzene oxidation in involves activation by methylation and is regulated by the transition state regulator AbrB.
Appl Environ Microbiol. 2024 Oct 23;90(10):e0085624. doi: 10.1128/aem.00856-24. Epub 2024 Sep 17.

本文引用的文献

2
Characterization of a cross-linked protein-nucleic acid substrate radical in the reaction catalyzed by RlmN.
J Am Chem Soc. 2014 Jun 11;136(23):8221-8. doi: 10.1021/ja410560p. Epub 2014 Jun 2.
3
Biosynthesis of the structurally unique polycyclopropanated polyketide-nucleoside hybrid jawsamycin (FR-900848).
Angew Chem Int Ed Engl. 2014 May 19;53(21):5423-6. doi: 10.1002/anie.201402623. Epub 2014 Apr 23.
4
Radical S-adenosylmethionine enzymes.
Chem Rev. 2014 Apr 23;114(8):4229-317. doi: 10.1021/cr4004709. Epub 2014 Jan 29.
5
Initial characterization of Fom3 from Streptomyces wedmorensis: The methyltransferase in fosfomycin biosynthesis.
Arch Biochem Biophys. 2014 Feb 1;543:67-73. doi: 10.1016/j.abb.2013.12.004. Epub 2013 Dec 24.
6
The Structure-Function Linkage Database.
Nucleic Acids Res. 2014 Jan;42(Database issue):D521-30. doi: 10.1093/nar/gkt1130. Epub 2013 Nov 23.
7
Radical SAM-mediated methylation reactions.
Curr Opin Chem Biol. 2013 Aug;17(4):597-604. doi: 10.1016/j.cbpa.2013.05.032. Epub 2013 Jul 5.
9
A substrate radical intermediate in catalysis by the antibiotic resistance protein Cfr.
Nat Chem Biol. 2013 Jul;9(7):422-7. doi: 10.1038/nchembio.1251. Epub 2013 May 5.
10
The mechanisms of radical SAM/cobalamin methylations: an evolving working hypothesis.
Chembiochem. 2013 Apr 15;14(6):675-7. doi: 10.1002/cbic.201200762. Epub 2013 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验