Suppr超能文献

关于孔径大小和可通过性的静态和动态视觉信息。

Static and dynamic visual information about the size and passability of an aperture.

作者信息

Fath Aaron J, Fajen Brett R

机构信息

Department of Cognitive Science, Carnegie Building 308, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, USA.

出版信息

Perception. 2011;40(8):887-904. doi: 10.1068/p6917.

Abstract

The role of static eyeheight-scaled information in perceiving the passability of and guiding locomotion through apertures is well established. However, eyeheight-scaled information is not the only source of visual information about size and passability. In this study we tested the sufficiency of two other sources of information, both of which are available only to moving observers (ie are dynamic) and specify aperture size in intrinsic body-scaled units. The experiment was conducted in an immersive virtual environment that was monocularly viewed through a head-mounted display. Subjects walked through narrow openings between obstacles, rotating their shoulders as necessary, while head and shoulder position were tracked. The task was performed in three virtual environments that differed in terms of the availability of eyeheight-scaled information and the two dynamic sources of information. Analyses focused on the timing and amplitude of shoulder rotation as subjects walked through apertures, as well as walking speed and the number of collisions. Subjects successfully timed and appropriately scaled the amplitude of shoulder rotation to fit through apertures in all three conditions. These findings suggest that visual information other than eyeheight-scaled information can be used to guide locomotion through apertures.

摘要

静态眼高比例信息在感知孔径的可通过性以及引导通过孔径的运动方面的作用已得到充分证实。然而,眼高比例信息并非关于尺寸和可通过性的视觉信息的唯一来源。在本研究中,我们测试了另外两种信息来源的充分性,这两种信息来源仅对移动观察者可用(即动态的),并以固有身体比例单位指定孔径大小。实验在一个沉浸式虚拟环境中进行,通过头戴式显示器单眼观看。受试者在障碍物之间穿过狭窄开口,必要时转动肩膀,同时跟踪头部和肩膀的位置。该任务在三个虚拟环境中执行,这三个虚拟环境在眼高比例信息和两种动态信息来源的可用性方面有所不同。分析重点关注受试者穿过孔径时肩膀转动的时间和幅度,以及行走速度和碰撞次数。在所有三种情况下,受试者都成功地把握了时间,并适当地调整了肩膀转动的幅度以穿过孔径。这些发现表明,除眼高比例信息之外的视觉信息可用于引导通过孔径的运动。

相似文献

2
Visual guidance of walking through apertures: body-scaled information for affordances.
J Exp Psychol Hum Percept Perform. 1987 Aug;13(3):371-83. doi: 10.1037//0096-1523.13.3.371.
3
Does the passability of apertures change when walking through human versus pole obstacles?
Acta Psychol (Amst). 2015 Nov;162:62-8. doi: 10.1016/j.actpsy.2015.10.007. Epub 2015 Oct 31.
4
Virtual auditory aperture passability.
Exp Brain Res. 2019 Jan;237(1):191-200. doi: 10.1007/s00221-018-5407-z. Epub 2018 Oct 29.
5
Sensory substitution information informs locomotor adjustments when walking through apertures.
Exp Brain Res. 2014 Mar;232(3):975-84. doi: 10.1007/s00221-013-3809-5. Epub 2013 Dec 27.
6
Are avatars treated like human obstacles during aperture crossing in virtual environments?
Gait Posture. 2020 Jul;80:74-76. doi: 10.1016/j.gaitpost.2020.05.028. Epub 2020 May 22.
7
Rule for scaling shoulder rotation angles while walking through apertures.
PLoS One. 2012;7(10):e48123. doi: 10.1371/journal.pone.0048123. Epub 2012 Oct 29.
8
Action strategies for walking through multiple, misaligned apertures.
Acta Psychol (Amst). 2018 Jan;182:100-106. doi: 10.1016/j.actpsy.2017.11.006. Epub 2017 Nov 20.
9
Sensory substitution: The affordance of passability, body-scaled perception, and exploratory movements.
PLoS One. 2019 Mar 27;14(3):e0213342. doi: 10.1371/journal.pone.0213342. eCollection 2019.
10
Action strategies of individuals during aperture crossing in nonconfined space.
Q J Exp Psychol (Hove). 2013 Jun;66(6):1104-12. doi: 10.1080/17470218.2012.730532.

引用本文的文献

1
Visual control of steering through multiple waypoints.
Sci Rep. 2025 Aug 25;15(1):31261. doi: 10.1038/s41598-025-15880-2.
2
Jumping and leaping estimations using optic flow.
Psychon Bull Rev. 2024 Aug;31(4):1759-1767. doi: 10.3758/s13423-024-02459-7. Epub 2024 Jan 29.
3
Influencing the body schema through the feeling of satiety.
Sci Rep. 2022 Feb 11;12(1):2350. doi: 10.1038/s41598-022-06331-3.
4
Information Is Where You Find It: Perception as an Ecologically Well-Posed Problem.
Iperception. 2021 Mar 22;12(2):20416695211000366. doi: 10.1177/20416695211000366. eCollection 2021 Mar-Apr.
5
Bumblebees perceive the spatial layout of their environment in relation to their body size and form to minimize inflight collisions.
Proc Natl Acad Sci U S A. 2020 Dec 8;117(49):31494-31499. doi: 10.1073/pnas.2016872117. Epub 2020 Nov 23.
6
Are avatars treated like human obstacles during aperture crossing in virtual environments?
Gait Posture. 2020 Jul;80:74-76. doi: 10.1016/j.gaitpost.2020.05.028. Epub 2020 May 22.
7
Sensory substitution: The affordance of passability, body-scaled perception, and exploratory movements.
PLoS One. 2019 Mar 27;14(3):e0213342. doi: 10.1371/journal.pone.0213342. eCollection 2019.
8
Virtual auditory aperture passability.
Exp Brain Res. 2019 Jan;237(1):191-200. doi: 10.1007/s00221-018-5407-z. Epub 2018 Oct 29.
9
Adaptive Gaze Strategies for Locomotion with Constricted Visual Field.
Front Hum Neurosci. 2017 Jul 27;11:387. doi: 10.3389/fnhum.2017.00387. eCollection 2017.
10
Perception of Affordance during Short-Term Exposure to Weightlessness in Parabolic Flight.
PLoS One. 2016 Apr 20;11(4):e0153598. doi: 10.1371/journal.pone.0153598. eCollection 2016.

本文引用的文献

1
Gaze behavior during locomotion through apertures: the effect of locomotion forms.
Hum Mov Sci. 2009 Dec;28(6):760-71. doi: 10.1016/j.humov.2009.07.012. Epub 2009 Sep 26.
2
Perceiving affordances for aperture passage in an environment-person-person system.
J Mot Behav. 2009 Nov;41(6):495-500. doi: 10.3200/35-08-095.
5
Lateral ball interception: hand movements during linear ball trajectories.
Exp Brain Res. 2007 Mar;177(3):312-23. doi: 10.1007/s00221-006-0671-8.
6
Locomotion through apertures when wider space for locomotion is necessary: adaptation to artificially altered bodily states.
Exp Brain Res. 2006 Oct;175(1):50-9. doi: 10.1007/s00221-006-0525-4. Epub 2006 Jun 8.
7
Lateral interception I: operative optical variables, attunement, and calibration.
J Exp Psychol Hum Percept Perform. 2006 Apr;32(2):443-58. doi: 10.1037/0096-1523.32.2.443.
8
Different strategies for using motion-in-depth information in catching.
J Exp Psychol Hum Percept Perform. 2005 Oct;31(5):1004-22. doi: 10.1037/0096-1523.31.5.1004.
9
Visual estimation of spatial requirements for locomotion in novice wheelchair users.
J Exp Psychol Appl. 2004 Mar;10(1):55-66. doi: 10.1037/1076-898X.10.1.55.
10
Contribution of extraretinal signals to the scaling of object distance during self-motion.
Percept Psychophys. 2002 Jul;64(5):717-31. doi: 10.3758/bf03194739.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验