Suppr超能文献

为了更好地理解伽马指数:使用基于表面的距离方法研究参数。

Toward a better understanding of the gamma index: Investigation of parameters with a surface-based distance method.

机构信息

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.

出版信息

Med Phys. 2011 Dec;38(12):6730-41. doi: 10.1118/1.3659707.

Abstract

PURPOSE

The purpose of this work was to clarify the interactions between the parameters used in the γ index with the surface-based distance method, which itself can be viewed as a generalized version of the γ index. The examined parameters included the distance to agreement (DTA)/dose difference (DD) criteria, the percentage used as a passing criterion, and the passing percentage for given DTA/DD criteria. The specific aims of our work were (1) to understand the relationships between the parameters used in the γ index, (2) to determine the detection limit, or the minimum detectable error, of the γ index with a given set of parameters, and (3) to establish a procedure to determine parameters that are consistent with the capacity of an IMRT QA system.

METHODS

The surface-based distance technique with dose gradient factor was derived, and then the relationship between surface-based distance and γ index was established. The dose gradient factor for plans and measurements of 10 IMRT patients, 10 spine stereotactic radiosurgery (SRS) patients, and 3 Radiological Physics Center (RPC) head and neck phantom were calculated and evaluated. The detection limits of the surface-based distance and γ index methods were examined by introducing known shifts to the 10 IMRT plans.

RESULTS

The means of the dose gradient factors were 0.434 mm/% and 0.956 mm/% for the SRS and IMRT plans, respectively. Key quantities (including the mean and 90th and 99th percentiles of the distance distribution) of the surface-based distance distribution between two dose distributions were linearly proportional to the actual shifts. However, the passing percentage of the γ index for a given set of DTA/DD criteria was not associated with the actual shift. For IMRT, using the standard quality assurance criteria of 3 mm/3% DTA/DD and a 90% passing rate, we found that the detection limit of the γ index in terms of global shift was 4.07 mm/4.07 % without noise.

CONCLUSIONS

Surface-based distance is a direct measure of the difference between two dose distributions and can be used to evaluate or determine parameters for use in calculating the γ index. The dose gradient factor represents the weighting between spatial and dose shift and should be determined before DTA/DD criteria are set. The authors also present a procedure to determine γ index parameters from measurements.

摘要

目的

本研究旨在阐明γ指数与基于表面的距离方法中使用的参数之间的相互作用,该方法本身可以被视为γ指数的广义版本。所研究的参数包括距离一致性(DTA)/剂量差(DD)标准、用作通过标准的百分比以及给定 DTA/DD 标准的通过百分比。我们研究的具体目标是:(1)理解γ指数中使用的参数之间的关系;(2)确定具有给定参数集的γ指数的检测极限或最小可检测误差;(3)建立一种确定与 IMRT QA 系统能力一致的参数的程序。

方法

推导了基于表面的距离技术和剂量梯度因子,然后建立了基于表面的距离与γ指数之间的关系。计算并评估了 10 例 IMRT 患者、10 例脊柱立体定向放射外科(SRS)患者和 3 例放射物理中心(RPC)头颈部体模的计划和测量的剂量梯度因子。通过向 10 例 IMRT 计划引入已知的移位来检查基于表面的距离和γ指数方法的检测极限。

结果

SRS 和 IMRT 计划的剂量梯度因子的平均值分别为 0.434 mm/%和 0.956 mm/%。两个剂量分布之间基于表面的距离分布的关键量(包括距离分布的均值和 90%和 99%分位数)与实际移位线性相关。然而,给定 DTA/DD 标准的γ指数的通过百分比与实际移位无关。对于 IMRT,使用 3 mm/3% DTA/DD 的标准质量保证标准和 90%的通过率,我们发现,在没有噪声的情况下,γ指数的全局移位检测极限为 4.07 mm/4.07%。

结论

基于表面的距离是两个剂量分布之间差异的直接度量,可以用于评估或确定用于计算γ指数的参数。剂量梯度因子表示空间和剂量移位之间的权重,应在设置 DTA/DD 标准之前确定。作者还提出了一种从测量值确定γ指数参数的程序。

相似文献

2
On the insensitivity of single field planar dosimetry to IMRT inaccuracies.
Med Phys. 2010 Jun;37(6):2516-24. doi: 10.1118/1.3425781.
3
Breaking bad IMRT QA practice.
J Appl Clin Med Phys. 2015 May 8;16(3):5242. doi: 10.1120/jacmp.v16i3.5242.
6
IMRT QA: Selecting gamma criteria based on error detection sensitivity.
Med Phys. 2016 Apr;43(4):1982. doi: 10.1118/1.4943953.
8
Biological consequences of MLC calibration errors in IMRT delivery and QA.
Med Phys. 2012 Apr;39(4):1917-24. doi: 10.1118/1.3692177.
10

引用本文的文献

2
Clinical validation of MR-generated synthetic CT by MRCAT for brain tumor radiotherapy.
J Appl Clin Med Phys. 2025 Jan;26(1):e14494. doi: 10.1002/acm2.14494. Epub 2024 Dec 13.
3
Proton dose calculation on cone-beam computed tomography using unsupervised 3D deep learning networks.
Phys Imaging Radiat Oncol. 2024 Oct 26;32:100658. doi: 10.1016/j.phro.2024.100658. eCollection 2024 Oct.
4
First Monte Carlo beam model for ultra-high dose rate radiotherapy with a compact electron LINAC.
Med Phys. 2024 Jul;51(7):5109-5118. doi: 10.1002/mp.17031. Epub 2024 Mar 17.
5
Evaluating AAPM-TG-218 recommendations: Gamma index tolerance and action limits in IMRT and VMAT quality assurance using SunCHECK.
J Appl Clin Med Phys. 2024 Jun;25(6):e14277. doi: 10.1002/acm2.14277. Epub 2024 Jan 19.
6
Dosimetric Analysis of -based Phantom Material in Radiation Therapy Applications Using Monte Carlo GATE Simulation.
J Med Phys. 2023 Oct-Dec;48(4):358-364. doi: 10.4103/jmp.jmp_75_23. Epub 2023 Dec 5.
7
Isodose surface differences: A novel tool for the comparison of dose distributions.
J Appl Clin Med Phys. 2023 Nov;24(11):e14085. doi: 10.1002/acm2.14085. Epub 2023 Oct 4.
8
Reduction of the skin‑effect dose of IMRT plan for patients with cancer in pelvic region.
Mol Clin Oncol. 2023 Mar 30;18(5):43. doi: 10.3892/mco.2023.2639. eCollection 2023 May.
10

本文引用的文献

1
A CT-based software tool for evaluating compensator quality in passively scattered proton therapy.
Phys Med Biol. 2010 Nov 21;55(22):6759-71. doi: 10.1088/0031-9155/55/22/010. Epub 2010 Oct 28.
3
Investigating the Feasibility of 3D Dosimetry in the RPC IMRT H&N Phantom.
J Phys Conf Ser. 2009;164(2009):12058. doi: 10.1088/1742-6596/164/1/012058.
4
A new metric for assessing IMRT modulation complexity and plan deliverability.
Med Phys. 2010 Feb;37(2):505-15. doi: 10.1118/1.3276775.
5
Real-time dynamic MLC tracking for inversely optimized arc radiotherapy.
Radiother Oncol. 2010 Feb;94(2):218-23. doi: 10.1016/j.radonc.2009.12.022. Epub 2010 Jan 19.
7
Quality assurance of volumetric modulated arc therapy using Elekta Synergy.
Acta Oncol. 2009;48(8):1193-7. doi: 10.3109/02841860903081905.
8
The delta envelope: a technique for dose distribution comparison.
Med Phys. 2009 Mar;36(3):797-808. doi: 10.1118/1.3070546.
9
Challenges in credentialing institutions and participants in advanced technology multi-institutional clinical trials.
Int J Radiat Oncol Biol Phys. 2008;71(1 Suppl):S71-5. doi: 10.1016/j.ijrobp.2007.08.083.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验