Suppr超能文献

非靶向代谢数量性状基因座分析揭示了初级代谢与马铃薯块茎品质之间的关系。

Untargeted metabolic quantitative trait loci analyses reveal a relationship between primary metabolism and potato tuber quality.

机构信息

Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands.

出版信息

Plant Physiol. 2012 Mar;158(3):1306-18. doi: 10.1104/pp.111.188441. Epub 2012 Jan 5.

Abstract

Recent advances in -omics technologies such as transcriptomics, metabolomics, and proteomics along with genotypic profiling have permitted dissection of the genetics of complex traits represented by molecular phenotypes in nonmodel species. To identify the genetic factors underlying variation in primary metabolism in potato (Solanum tuberosum), we have profiled primary metabolite content in a diploid potato mapping population, derived from crosses between S. tuberosum and wild relatives, using gas chromatography-time of flight-mass spectrometry. In total, 139 polar metabolites were detected, of which we identified metabolite quantitative trait loci for approximately 72% of the detected compounds. In order to obtain an insight into the relationships between metabolic traits and classical phenotypic traits, we also analyzed statistical associations between them. The combined analysis of genetic information through quantitative trait locus coincidence and the application of statistical learning methods provide information on putative indicators associated with the alterations in metabolic networks that affect complex phenotypic traits.

摘要

近年来,转录组学、代谢组学和蛋白质组学等组学技术的进步,以及基因型分析,使得对非模式物种中分子表型所代表的复杂性状的遗传学进行剖析成为可能。为了鉴定马铃薯(Solanum tuberosum)中初级代谢物变异的遗传因素,我们使用气相色谱-飞行时间-质谱联用技术,对源自马铃薯与野生近缘种杂交的二倍体马铃薯作图群体的初级代谢物含量进行了分析。共检测到 139 种极性代谢物,其中约 72%的检测化合物的代谢物数量性状位点被我们鉴定出来。为了深入了解代谢性状与经典表型性状之间的关系,我们还分析了它们之间的统计相关性。通过数量性状位点一致性的遗传信息综合分析和统计学习方法的应用,为与影响复杂表型性状的代谢网络变化相关的假定指标提供了信息。

相似文献

2
Integration of multi-omics data for prediction of phenotypic traits using random forest.
BMC Bioinformatics. 2016 Jun 6;17 Suppl 5(Suppl 5):180. doi: 10.1186/s12859-016-1043-4.
3
Quantitative trait loci for tuber blackspot bruise and enzymatic discoloration susceptibility in diploid potato.
Mol Genet Genomics. 2018 Apr;293(2):331-342. doi: 10.1007/s00438-017-1387-0. Epub 2017 Oct 27.
5
Genetical genomics of quality related traits in potato tubers using proteomics.
BMC Plant Biol. 2018 Jan 23;18(1):20. doi: 10.1186/s12870-018-1229-1.
6
Molecular and biochemical characterization of a potato collection with contrasting tuber carotenoid content.
PLoS One. 2017 Sep 12;12(9):e0184143. doi: 10.1371/journal.pone.0184143. eCollection 2017.
7
Linkage analysis and QTL mapping in a tetraploid russet mapping population of potato.
BMC Genet. 2018 Sep 21;19(1):87. doi: 10.1186/s12863-018-0672-1.
8
QTL for tuber morphology traits in diploid potato.
J Appl Genet. 2018 May;59(2):123-132. doi: 10.1007/s13353-018-0433-x. Epub 2018 Feb 28.
9
Genome-wide analysis of starch metabolism genes in potato (Solanum tuberosum L.).
BMC Genomics. 2017 Jan 5;18(1):37. doi: 10.1186/s12864-016-3381-z.
10
Mapping of quantitative trait loci for tuber starch and leaf sucrose contents in diploid potato.
Theor Appl Genet. 2016 Jan;129(1):131-40. doi: 10.1007/s00122-015-2615-9.

引用本文的文献

3
Translation of genome-wide association study: from genomic signals to biological insights.
Front Genet. 2024 Oct 3;15:1375481. doi: 10.3389/fgene.2024.1375481. eCollection 2024.
5
Plant Metabolomics: Current Initiatives and Future Prospects.
Curr Issues Mol Biol. 2023 Nov 8;45(11):8894-8906. doi: 10.3390/cimb45110558.
7
Plant biochemical genetics in the multiomics era.
J Exp Bot. 2023 Aug 17;74(15):4293-4307. doi: 10.1093/jxb/erad177.
8
4D genetic networks reveal the genetic basis of metabolites and seed oil-related traits in 398 soybean RILs.
Biotechnol Biofuels Bioprod. 2022 Sep 9;15(1):92. doi: 10.1186/s13068-022-02191-1.
9
A Role for Allantoate Amidohydrolase (AtAAH) in the Germination of Arabidopsis thaliana Seeds.
Plant Cell Physiol. 2022 Sep 15;63(9):1298-1308. doi: 10.1093/pcp/pcac103.
10
Research Progress and Trends in Metabolomics of Fruit Trees.
Front Plant Sci. 2022 Apr 29;13:881856. doi: 10.3389/fpls.2022.881856. eCollection 2022.

本文引用的文献

1
MSClust: a tool for unsupervised mass spectra extraction of chromatography-mass spectrometry ion-wise aligned data.
Metabolomics. 2012 Aug;8(4):714-718. doi: 10.1007/s11306-011-0368-2. Epub 2011 Oct 15.
2
Data integration and network reconstruction with ~omics data using Random Forest regression in potato.
Anal Chim Acta. 2011 Oct 31;705(1-2):56-63. doi: 10.1016/j.aca.2011.03.050. Epub 2011 Apr 13.
3
Genome sequence and analysis of the tuber crop potato.
Nature. 2011 Jul 10;475(7355):189-95. doi: 10.1038/nature10158.
4
Identification of alleles of carotenoid pathway genes important for zeaxanthin accumulation in potato tubers.
Plant Mol Biol. 2010 Aug;73(6):659-71. doi: 10.1007/s11103-010-9647-y. Epub 2010 May 19.
5
Discovering plant metabolic biomarkers for phenotype prediction using an untargeted approach.
Plant Biotechnol J. 2010 Oct;8(8):900-11. doi: 10.1111/j.1467-7652.2010.00516.x.
7
Starch: its metabolism, evolution, and biotechnological modification in plants.
Annu Rev Plant Biol. 2010;61:209-34. doi: 10.1146/annurev-arplant-042809-112301.
10
Genetical metabolomics: closing in on phenotypes.
Curr Opin Plant Biol. 2009 Apr;12(2):223-30. doi: 10.1016/j.pbi.2008.12.003. Epub 2009 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验