Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA.
Am J Trop Med Hyg. 2012 Feb;86(2):341-8. doi: 10.4269/ajtmh.2012.11-0469.
Dengue virus infections are a major cause of morbidity in tropical countries. Early detection of dengue hemorrhagic fever (DHF) may help identify individuals that would benefit from intensive therapy. Predictive modeling was performed using 11 laboratory values of 51 individuals (38 DF and 13 DHF) obtained on initial presentation using logistic regression. We produced a robust model with an area under the curve of 0.9615 that retained IL-10 levels, platelets, and lymphocytes as the major predictive features. A classification and regression tree was developed on these features that were 86% accurate on cross-validation. The IL-10 levels and platelet counts were also identified as the most informative features associated with DHF using a Random Forest classifier. In the presence of polymerase chain reaction-proven acute dengue infections, we suggest a complete blood count and rapid measurement of IL-10 can assist in the triage of potential DHF cases for close follow-up or clinical intervention improving clinical outcome.
登革热病毒感染是热带国家发病率的主要原因。早期发现登革出血热(DHF)可能有助于确定需要强化治疗的个体。使用逻辑回归对 51 名个体(38 例 DF 和 13 例 DHF)初次就诊时的 11 项实验室值进行了预测建模。我们生成了一个稳健的模型,曲线下面积为 0.9615,保留了白细胞介素 10 水平、血小板和淋巴细胞作为主要预测特征。在此基础上,利用分类回归树对这些特征进行了交叉验证,准确率为 86%。使用随机森林分类器还确定了白细胞介素 10 水平和血小板计数是与 DHF 相关的最具信息量的特征。在聚合酶链反应证实存在急性登革热感染的情况下,我们建议进行全血细胞计数和白细胞介素 10 的快速测量,以协助对潜在 DHF 病例进行分诊,以便密切随访或临床干预,改善临床结局。