Loehman Rachel A, Elias Joran, Douglass Richard J, Kuenzi Amy J, Mills James N, Wagoner Kent
US Forest Service, Rocky Mountain Research Station Fire Sciences Laboratory, 5775 West US Hwy 10, Missoula, Montana 59808, USA.
J Wildl Dis. 2012 Apr;48(2):348-60. doi: 10.7589/0090-3558-48.2.348.
Deer mice (Peromyscus maniculatus) are the main reservoir host for Sin Nombre virus, the primary etiologic agent of hantavirus pulmonary syndrome in North America. Sequential changes in weather and plant productivity (trophic cascades) have been noted as likely catalysts of deer mouse population irruptions, and monitoring and modeling of these phenomena may allow for development of early-warning systems for disease risk. Relationships among weather variables, satellite-derived vegetation productivity, and deer mouse populations were examined for a grassland site east of the Continental Divide and a sage-steppe site west of the Continental Divide in Montana, USA. We acquired monthly deer mouse population data for mid-1994 through 2007 from long-term study sites maintained for monitoring changes in hantavirus reservoir populations, and we compared these with monthly bioclimatology data from the same period and gross primary productivity data from the Moderate Resolution Imaging Spectroradiometer sensor for 2000-06. We used the Random Forests statistical learning technique to fit a series of predictive models based on temperature, precipitation, and vegetation productivity variables. Although we attempted several iterations of models, including incorporating lag effects and classifying rodent density by seasonal thresholds, our results showed no ability to predict rodent populations using vegetation productivity or weather data. We concluded that trophic cascade connections to rodent population levels may be weaker than originally supposed, may be specific to only certain climatic regions, or may not be detectable using remotely sensed vegetation productivity measures, although weather patterns and vegetation dynamics were positively correlated.
鹿鼠(白足鼠)是辛诺柏病毒的主要储存宿主,辛诺柏病毒是北美汉坦病毒肺综合征的主要病原体。天气和植物生产力的连续变化(营养级联效应)被认为可能是鹿鼠种群爆发的催化剂,对这些现象进行监测和建模可能有助于开发疾病风险预警系统。在美国蒙大拿州大陆分水岭以东的一个草原站点和大陆分水岭以西的一个蒿属草原站点,研究了天气变量、卫星衍生的植被生产力与鹿鼠种群之间的关系。我们从为监测汉坦病毒储存宿主种群变化而设立的长期研究站点获取了1994年年中至2007年的月度鹿鼠种群数据,并将其与同期的月度生物气候学数据以及2000 - 2006年中分辨率成像光谱仪传感器获取的总初级生产力数据进行了比较。我们使用随机森林统计学习技术,基于温度、降水和植被生产力变量拟合了一系列预测模型。尽管我们尝试了多次模型迭代,包括纳入滞后效应并按季节阈值对啮齿动物密度进行分类,但我们的结果表明,无法利用植被生产力或天气数据预测啮齿动物种群。我们得出结论,营养级联与啮齿动物种群水平之间的联系可能比最初设想的要弱,可能仅特定于某些气候区域,或者使用遥感植被生产力测量方法可能无法检测到,尽管天气模式和植被动态呈正相关。