Suppr超能文献

进化博弈论和社会学习可以决定疫苗恐慌的发展。

Evolutionary game theory and social learning can determine how vaccine scares unfold.

机构信息

Department of Mathematics and Statistics, University of Guelph, Guelph, Canada.

出版信息

PLoS Comput Biol. 2012;8(4):e1002452. doi: 10.1371/journal.pcbi.1002452. Epub 2012 Apr 5.

Abstract

Immunization programs have often been impeded by vaccine scares, as evidenced by the measles-mumps-rubella (MMR) autism vaccine scare in Britain. A "free rider" effect may be partly responsible: vaccine-generated herd immunity can reduce disease incidence to such low levels that real or imagined vaccine risks appear large in comparison, causing individuals to cease vaccinating. This implies a feedback loop between disease prevalence and strategic individual vaccinating behavior. Here, we analyze a model based on evolutionary game theory that captures this feedback in the context of vaccine scares, and that also includes social learning. Vaccine risk perception evolves over time according to an exogenously imposed curve. We test the model against vaccine coverage data and disease incidence data from two vaccine scares in England & Wales: the whole cell pertussis vaccine scare and the MMR vaccine scare. The model fits vaccine coverage data from both vaccine scares relatively well. Moreover, the model can explain the vaccine coverage data more parsimoniously than most competing models without social learning and/or feedback (hence, adding social learning and feedback to a vaccine scare model improves model fit with little or no parsimony penalty). Under some circumstances, the model can predict future vaccine coverage and disease incidence--up to 10 years in advance in the case of pertussis--including specific qualitative features of the dynamics, such as future incidence peaks and undulations in vaccine coverage due to the population's response to changing disease incidence. Vaccine scares could become more common as eradication goals are approached for more vaccine-preventable diseases. Such models could help us predict how vaccine scares might unfold and assist mitigation efforts.

摘要

免疫计划经常受到疫苗恐慌的阻碍,英国麻疹、腮腺炎、风疹(MMR)疫苗自闭症恐慌就是一个例证。“搭便车”效应可能是部分原因:疫苗产生的群体免疫可以将疾病发病率降低到如此低的水平,以至于真正或想象中的疫苗风险显得相对较大,导致人们停止接种疫苗。这意味着疾病流行率和个体策略性接种行为之间存在反馈循环。在这里,我们分析了一个基于进化博弈论的模型,该模型在疫苗恐慌的背景下捕捉到了这种反馈,同时还包括社会学习。疫苗风险感知会根据外部施加的曲线随时间演变。我们根据来自英格兰和威尔士的两次疫苗恐慌的疫苗接种率数据和疾病发病率数据对模型进行了测试:全细胞百日咳疫苗恐慌和 MMR 疫苗恐慌。该模型相对较好地拟合了两次疫苗恐慌的疫苗接种率数据。此外,与没有社会学习和/或反馈的大多数竞争模型相比,该模型可以更简洁地解释疫苗接种率数据(因此,向疫苗恐慌模型添加社会学习和反馈可以提高模型拟合度,而几乎没有或没有简约性惩罚)。在某些情况下,该模型可以预测未来的疫苗接种率和疾病发病率——在百日咳的情况下,提前 10 年预测——包括动态的特定定性特征,例如由于人口对不断变化的疾病发病率的反应,未来的发病率峰值和疫苗接种率的波动。随着更多可通过疫苗预防的疾病接近根除目标,疫苗恐慌可能会变得更加普遍。此类模型可以帮助我们预测疫苗恐慌可能如何发展,并协助缓解工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a212/3320575/205f816f5ea4/pcbi.1002452.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验