Comer Jeffrey, Aksimentiev Aleksei
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
J Phys Chem C Nanomater Interfaces. 2012 Feb 9;116(5):3376-3393. doi: 10.1021/jp210641j. Epub 2012 Jan 9.
It has become possible to distinguish DNA molecules of different nucleotide sequences by measuring ion current passing through a narrow pore containing DNA. To assist experimentalists in interpreting the results of such measurements and to improve the DNA sequence detection method, we have developed a computational approach that has both the atomic-scale accuracy and the computational efficiency required to predict DNA sequence-specific differences in the nanopore ion current. In our Brownian dynamics method, the interaction between the ions and DNA is described by three-dimensional potential of mean force maps determined to a 0.03 nm resolution from all-atom molecular dynamics simulations. While this atomic-resolution Brownian dynamics method produces results with orders of magnitude less computational effort than all-atom molecular dynamics requires, we show here that the ion distributions and ion currents predicted by the two methods agree. Finally, using our Brownian dynamics method, we find that a small change in the sequence of DNA within a pore can cause a large change in the ion current, and validate this result with all-atom molecular dynamics.
通过测量穿过含有DNA的狭窄孔道的离子电流,已能够区分不同核苷酸序列的DNA分子。为了帮助实验人员解释此类测量结果并改进DNA序列检测方法,我们开发了一种计算方法,该方法具有预测纳米孔离子电流中DNA序列特异性差异所需的原子尺度精度和计算效率。在我们的布朗动力学方法中,离子与DNA之间的相互作用由从全原子分子动力学模拟确定到0.03 nm分辨率的三维平均力势图来描述。虽然这种原子分辨率的布朗动力学方法产生结果所需的计算量比全原子分子动力学少几个数量级,但我们在此表明,两种方法预测的离子分布和离子电流是一致的。最后,使用我们的布朗动力学方法,我们发现孔内DNA序列的微小变化会导致离子电流的大幅变化,并用全原子分子动力学验证了这一结果。