Department of Radiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA.
Brain Connect. 2012;2(4):203-17. doi: 10.1089/brain.2012.0095. Epub 2012 Aug 28.
In this study, we investigate a new approach for examining the separation of the brain into resting-state networks (RSNs) on a group level using resting-state parameters (amplitude of low-frequency fluctuation [ALFF], fractional ALFF [fALFF], the Hurst exponent, and signal standard deviation). Spatial independent component analysis is used to reveal covariance patterns of the relevant resting-state parameters (not the time series) across subjects that are shown to be related to known, standard RSNs. As part of the analysis, nonresting state parameters are also investigated, such as mean of the blood oxygen level-dependent time series and gray matter volume from anatomical scans. We hypothesize that meaningful RSNs will primarily be elucidated by analysis of the resting-state functional connectivity (RSFC) parameters and not by non-RSFC parameters. First, this shows the presence of a common influence underlying individual RSFC networks revealed through low-frequency fluctation (LFF) parameter properties. Second, this suggests that the LFFs and RSFC networks have neurophysiological origins. Several of the components determined from resting-state parameters in this manner correlate strongly with known resting-state functional maps, and we term these "functional covariance networks".
在这项研究中,我们采用静息态参数(低频振幅[ALFF]、分数 ALFF[fALFF]、赫斯特指数和信号标准差),研究了一种在组水平上检查大脑分离为静息态网络(RSNs)的新方法。空间独立成分分析用于揭示相关静息态参数(不是时间序列)在受试者之间的协方差模式,这些模式与已知的标准 RSN 相关。作为分析的一部分,还研究了非静息状态参数,例如血氧水平依赖时间序列的平均值和解剖扫描的灰质体积。我们假设,有意义的 RSN 将主要通过对静息态功能连接(RSFC)参数的分析而不是非 RSFC 参数来阐明。首先,这表明通过低频波动(LFF)参数特性揭示的个体 RSFC 网络存在共同影响。其次,这表明 LFF 和 RSFC 网络具有神经生理学起源。以这种方式从静息态参数确定的几个分量与已知的静息态功能图谱强烈相关,我们将这些分量称为“功能协变网络”。