Suppr超能文献

功能协变网络:从个体间变异性中获得静息态网络。

Functional covariance networks: obtaining resting-state networks from intersubject variability.

机构信息

Department of Radiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA.

出版信息

Brain Connect. 2012;2(4):203-17. doi: 10.1089/brain.2012.0095. Epub 2012 Aug 28.

Abstract

In this study, we investigate a new approach for examining the separation of the brain into resting-state networks (RSNs) on a group level using resting-state parameters (amplitude of low-frequency fluctuation [ALFF], fractional ALFF [fALFF], the Hurst exponent, and signal standard deviation). Spatial independent component analysis is used to reveal covariance patterns of the relevant resting-state parameters (not the time series) across subjects that are shown to be related to known, standard RSNs. As part of the analysis, nonresting state parameters are also investigated, such as mean of the blood oxygen level-dependent time series and gray matter volume from anatomical scans. We hypothesize that meaningful RSNs will primarily be elucidated by analysis of the resting-state functional connectivity (RSFC) parameters and not by non-RSFC parameters. First, this shows the presence of a common influence underlying individual RSFC networks revealed through low-frequency fluctation (LFF) parameter properties. Second, this suggests that the LFFs and RSFC networks have neurophysiological origins. Several of the components determined from resting-state parameters in this manner correlate strongly with known resting-state functional maps, and we term these "functional covariance networks".

摘要

在这项研究中,我们采用静息态参数(低频振幅[ALFF]、分数 ALFF[fALFF]、赫斯特指数和信号标准差),研究了一种在组水平上检查大脑分离为静息态网络(RSNs)的新方法。空间独立成分分析用于揭示相关静息态参数(不是时间序列)在受试者之间的协方差模式,这些模式与已知的标准 RSN 相关。作为分析的一部分,还研究了非静息状态参数,例如血氧水平依赖时间序列的平均值和解剖扫描的灰质体积。我们假设,有意义的 RSN 将主要通过对静息态功能连接(RSFC)参数的分析而不是非 RSFC 参数来阐明。首先,这表明通过低频波动(LFF)参数特性揭示的个体 RSFC 网络存在共同影响。其次,这表明 LFF 和 RSFC 网络具有神经生理学起源。以这种方式从静息态参数确定的几个分量与已知的静息态功能图谱强烈相关,我们将这些分量称为“功能协变网络”。

相似文献

引用本文的文献

4
Brain connectomics: time for a molecular imaging perspective?脑连接组学:是时候从分子影像学角度来看待了吗?
Trends Cogn Sci. 2023 Apr;27(4):353-366. doi: 10.1016/j.tics.2022.11.015. Epub 2023 Jan 6.

本文引用的文献

1
Temporally-independent functional modes of spontaneous brain activity.自发脑活动的时间独立功能模式。
Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):3131-6. doi: 10.1073/pnas.1121329109. Epub 2012 Feb 7.
4
Network-level structural covariance in the developing brain.脑发育过程中的网络级结构协变。
Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18191-6. doi: 10.1073/pnas.1003109107. Epub 2010 Oct 4.
5
Regional aerobic glycolysis in the human brain.人脑的区域有氧糖酵解。
Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17757-62. doi: 10.1073/pnas.1010459107. Epub 2010 Sep 13.
6
Toward discovery science of human brain function.迈向人类大脑功能的发现科学。
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4734-9. doi: 10.1073/pnas.0911855107. Epub 2010 Feb 22.
9
The oscillating brain: complex and reliable.振荡的大脑:复杂而可靠。
Neuroimage. 2010 Jan 15;49(2):1432-45. doi: 10.1016/j.neuroimage.2009.09.037. Epub 2009 Sep 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验