Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, Medford, Massachusetts, USA.
Anat Rec (Hoboken). 2012 Oct;295(10):1541-51. doi: 10.1002/ar.22495. Epub 2012 Aug 29.
One important component of the cell-cell communication that occurs during regenerative patterning is bioelectrical signaling. In particular, the regeneration of the tail in Xenopus laevis tadpoles both requires, and can be initiated at non-regenerative stages by, specific regulation of bioelectrical signaling (alteration in resting membrane potential and a subsequent change in sodium content of blastemal cells). Although standing gradients of transmembrane voltage and ion concentration can provide positional guidance and other morphogenetic cues, these biophysical parameters must be transduced into transcriptional responses within cells. A number of mechanisms have been described for linking slow voltage changes to gene expression, but recent data on the importance of epigenetic regulation for regeneration suggest a novel hypothesis: that sodium/butyrate transporters link ion flows to influx of small molecules needed to modify chromatin state. Here, we briefly review the data on bioelectricity in tadpole tail regeneration, present a technique for convenient alteration of transmembrane potential in vivo that does not require transgenes, show augmentation of regeneration in vivo by manipulation of voltage, and present new data in the Xenopus tail consistent with the hypothesis that the monocarboxlyate transporter SLC5A8 may link regeneration-relevant epigenetic modification with upstream changes in ion content.
细胞间通讯的一个重要组成部分是生物电信号。特别是,非洲爪蟾幼虫尾部的再生不仅需要,而且可以在非再生阶段通过生物电信号的特定调节(静息膜电位的改变和随后间质细胞钠离子含量的变化)来启动。尽管跨膜电压和离子浓度的稳定梯度可以提供位置指导和其他形态发生线索,但这些生物物理参数必须在细胞内转化为转录反应。已经描述了许多将缓慢电压变化与基因表达联系起来的机制,但最近关于表观遗传调控对再生重要性的研究数据表明了一个新的假说:钠离子/丁酸盐转运体将离子流与改变染色质状态所需的小分子的流入联系起来。在这里,我们简要回顾了关于非洲爪蟾幼虫尾部再生的生物电学数据,提出了一种方便的体内跨膜电位改变技术,该技术不需要转基因,通过电压操作增强了体内再生,并提供了新的数据,这些数据与单羧酸转运体 SLC5A8 可能将与再生相关的表观遗传修饰与离子含量的上游变化联系起来的假说一致。