Minost Audrey, Delaveau Jean, Bolzinger Marie-Alexandrine, Fessi Hatem, Elaissari Abdelhamid
Universite de Lyon, F- 69622, Lyon, France; Universite Lyon 1, Villeurbanne, CNRS, UMR 5007, LAGEP, CPE-308G, 43 bd. 11 Nov.1918, F-69622, Villeurbanne, France.
Recent Pat Drug Deliv Formul. 2012 Dec;6(3):250-8. doi: 10.2174/187221112802652615.
Various encapsulation approaches have been explored during the last years in order to encapsulate classical active molecules and new synthesized molecules principally for the in vivo therapy as drug delivery nanocarriers and also for the in vivo biomedical diagnostic. These approaches lead to new and versatile systems exhibiting high encapsulation yields of small molecules mainly. Due to the use of biodegradable polymers, the final particles and dispersions exhibit low cytotoxicity and in some cases total biocompatibility. To enhance local targeting efficiency, nanoparticles are chemically grafted using specific antibody for a specific disease. One of the easiest processes leading to rapid particles formation is the nanoprecipitation. Such process is mainly based on polymer transfer from good solvent to poor solvent condition, leading consequently to nanoparticles formation via self-assembly of precipitated polymer chains. The article discussed some of patents associated with Nanoprecipitation Process.
在过去几年中,人们探索了各种封装方法,主要是为了将经典活性分子和新合成分子封装起来,用于体内治疗作为药物递送纳米载体,以及用于体内生物医学诊断。这些方法产生了新型多功能系统,主要表现出对小分子的高封装率。由于使用了可生物降解的聚合物,最终的颗粒和分散体具有低细胞毒性,在某些情况下还具有完全的生物相容性。为了提高局部靶向效率,纳米颗粒通过针对特定疾病的特异性抗体进行化学接枝。导致快速形成颗粒的最简单方法之一是纳米沉淀法。这种方法主要基于聚合物从良溶剂向不良溶剂条件的转移,从而通过沉淀聚合物链的自组装形成纳米颗粒。本文讨论了一些与纳米沉淀法相关的专利。