Division of Infectious Diseases and Global Health, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States of America.
Department of Epidemiology, Emory University, Atlanta, GA, United States of America.
PLoS One. 2022 Jul 18;17(7):e0265368. doi: 10.1371/journal.pone.0265368. eCollection 2022.
Common statistical modeling methods do not necessarily produce the most relevant or interpretable effect estimates to communicate risk. Overreliance on the odds ratio and relative effect measures limit the potential impact of epidemiologic and public health research. We created a straightforward R package, called riskCommunicator, to facilitate the presentation of a variety of effect measures, including risk differences and ratios, number needed to treat, incidence rate differences and ratios, and mean differences. The riskCommunicator package uses g-computation with parametric regression models and bootstrapping for confidence intervals to estimate effect measures in time-fixed data. We demonstrate the utility of the package using data from the Framingham Heart Study to estimate the effect of prevalent diabetes on the 24-year risk of cardiovascular disease or death. The package promotes the communication of public-health relevant effects and is accessible to a broad range of epidemiologists and health researchers with little to no expertise in causal inference methods or advanced coding.
常见的统计建模方法不一定能得出最相关或最易于解释的风险估计效果。过度依赖比值比和相对效果衡量标准限制了流行病学和公共卫生研究的潜在影响。我们创建了一个简单易用的 R 包,称为 riskCommunicator,以方便展示各种效果衡量标准,包括风险差异和比、需要治疗的人数、发病率差异和比、以及均数差异。riskCommunicator 包使用 g 计算和参数回归模型以及引导法来估计时间固定数据中的效果衡量标准。我们使用 Framingham 心脏研究的数据来演示该包的实用性,以估计现患糖尿病对 24 年心血管疾病或死亡风险的影响。该包促进了公共卫生相关效果的传播,并且易于使用,即使是那些在因果推断方法或高级编码方面几乎没有专业知识的广泛的流行病学家和健康研究人员也可以使用。