National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
Diabetes Care. 2013 Feb;36(2):362-8. doi: 10.2337/dc11-2546. Epub 2012 Aug 29.
Metabolic syndrome (MetS) is a cluster of abdominal obesity, hyperglycemia, hypertension, and dyslipidemia, which increases the risk for type 2 diabetes and cardiovascular diseases (CVDs). Some argue that MetS is not a single disorder because the traditional MetS features do not represent one entity, and they would like to exclude features from MetS. Others would like to add additional features in order to increase predictive ability of MetS. The aim of this study was to identify a MetS model that optimally predicts type 2 diabetes and CVD while still representing a single entity.
In a random sample (n = 1,928) of the EPIC-NL cohort and a subset of the EPIC-NL MORGEN study (n = 1,333), we tested the model fit of several one-factor MetS models using confirmatory factor analysis. We compared predictive ability for type 2 diabetes and CVD of these models within the EPIC-NL case-cohort study of 545 incident type 2 diabetic subjects, 1,312 incident CVD case subjects, and the random sample, using survival analyses and reclassification.
The standard model, representing the current MetS definition (EPIC-NL comparative fit index [CFI] = 0.95; MORGEN CFI = 0.98); the standard model excluding blood pressure (EPIC-NL CFI = 0.95; MORGEN CFI = 1.00); and the standard model extended with hsCRP (EPIC-NL CFI = 0.95) had an acceptable model fit. The model extended with hsCRP predicted type 2 diabetes (integral discrimination index [IDI]: 0.34) and CVD (IDI: 0.07) slightly better than did the standard model.
It seems valid to represent the traditional MetS features by a single entity. Extension of this entity with hsCRP slightly improves predictive ability for type 2 diabetes and CVD.
代谢综合征(MetS)是一组腹部肥胖、高血糖、高血压和血脂异常的病症,会增加 2 型糖尿病和心血管疾病(CVD)的风险。一些人认为代谢综合征不是一种单一的疾病,因为传统的代谢综合征特征并不代表一个实体,他们希望排除代谢综合征的特征。另一些人则希望增加其他特征,以提高代谢综合征的预测能力。本研究的目的是确定一种代谢综合征模型,该模型在代表单一实体的同时,能最佳预测 2 型糖尿病和 CVD。
在 EPIC-NL 队列的随机样本(n=1928)和 EPIC-NL MORGEN 研究的一个子集(n=1333)中,我们使用验证性因子分析测试了几种单因素代谢综合征模型的模型拟合度。我们在 EPIC-NL 545 例 2 型糖尿病新发病例、1312 例 CVD 新发病例和随机样本的病例-队列研究中,使用生存分析和重新分类比较了这些模型对 2 型糖尿病和 CVD 的预测能力。
代表当前代谢综合征定义的标准模型(EPIC-NL 比较拟合指数 [CFI] = 0.95;MORGEN CFI = 0.98);排除血压的标准模型(EPIC-NL CFI = 0.95;MORGEN CFI = 1.00);以及扩展 hsCRP 的标准模型(EPIC-NL CFI = 0.95)具有可接受的模型拟合度。扩展 hsCRP 的模型对 2 型糖尿病(综合鉴别指数 [IDI]:0.34)和 CVD(IDI:0.07)的预测能力略优于标准模型。
用单个实体来代表传统的代谢综合征特征似乎是合理的。将 hsCRP 扩展到这个实体中略微提高了对 2 型糖尿病和 CVD 的预测能力。