Suppr超能文献

实体瘤转移的生物电控制

Bioelectric Control of Metastasis in Solid Tumors.

作者信息

Payne Samantha L, Levin Michael, Oudin Madeleine J

机构信息

Department of Biomedical Engineering, Tufts University, Medford, Massachusetts.

Allen Discovery Center, Tufts University, Medford, Massachusetts.

出版信息

Bioelectricity. 2019 Sep 1;1(3):114-130. doi: 10.1089/bioe.2019.0013. Epub 2019 Sep 16.

Abstract

As the leading cause of death in cancer, there is an urgent need to develop treatments to target the dissemination of primary tumor cells to secondary organs, known as metastasis. Bioelectric signaling has emerged in the last century as an important controller of cell growth, and with the development of current molecular tools we are now beginning to identify its role in driving cell migration and metastasis in a variety of cancer types. This review summarizes the currently available research for bioelectric signaling in solid tumor metastasis. We review the steps of metastasis and discuss how these can be controlled by bioelectric cues at the level of a cell, a population of cells, and the tissue. The role of ion channel, pump, and exchanger activity and ion flux is discussed, along with the importance of the membrane potential and the relationship between ion flux and membrane potential. We also provide an overview of the evidence for control of metastasis by external electric fields (EFs) and draw from examples in embryogenesis and regeneration to discuss the implications for endogenous EFs. By increasing our understanding of the dynamic properties of bioelectric signaling, we can develop new strategies that target metastasis to be translated into the clinic.

摘要

作为癌症的主要死因,迫切需要开发针对原发性肿瘤细胞扩散至次级器官(即转移)的治疗方法。生物电信号在上个世纪已成为细胞生长的重要调控因子,随着当前分子工具的发展,我们现在开始确定其在多种癌症类型中驱动细胞迁移和转移的作用。本综述总结了目前关于生物电信号在实体瘤转移方面的研究。我们回顾了转移的步骤,并讨论了在细胞、细胞群体和组织水平上生物电信号如何控制这些步骤。讨论了离子通道、泵和交换器活性以及离子通量的作用,以及膜电位的重要性和离子通量与膜电位之间的关系。我们还概述了外部电场控制转移的证据,并借鉴胚胎发育和再生的例子来讨论内源性电场的影响。通过增进我们对生物电信号动态特性的理解,我们可以开发针对转移的新策略并转化到临床应用中。

相似文献

1
Bioelectric Control of Metastasis in Solid Tumors.
Bioelectricity. 2019 Sep 1;1(3):114-130. doi: 10.1089/bioe.2019.0013. Epub 2019 Sep 16.
2
Evolution of Bioelectric Membrane Potentials: Implications in Cancer Pathogenesis and Therapeutic Strategies.
J Membr Biol. 2024 Dec;257(5-6):281-305. doi: 10.1007/s00232-024-00323-2. Epub 2024 Aug 25.
4
Exploring Instructive Physiological Signaling with the Bioelectric Tissue Simulation Engine.
Front Bioeng Biotechnol. 2016 Jul 6;4:55. doi: 10.3389/fbioe.2016.00055. eCollection 2016.
5
Bioelectric signaling in regeneration: Mechanisms of ionic controls of growth and form.
Dev Biol. 2018 Jan 15;433(2):177-189. doi: 10.1016/j.ydbio.2017.08.032. Epub 2017 Dec 25.
8
Resting potential, oncogene-induced tumorigenesis, and metastasis: the bioelectric basis of cancer in vivo.
Phys Biol. 2012 Dec;9(6):065002. doi: 10.1088/1478-3975/9/6/065002. Epub 2012 Nov 29.
9
Endogenous bioelectrical networks store non-genetic patterning information during development and regeneration.
J Physiol. 2014 Jun 1;592(11):2295-305. doi: 10.1113/jphysiol.2014.271940.
10
Bioelectric mechanisms in regeneration: Unique aspects and future perspectives.
Semin Cell Dev Biol. 2009 Jul;20(5):543-56. doi: 10.1016/j.semcdb.2009.04.013. Epub 2009 May 3.

引用本文的文献

1
Bioelectric and physicochemical foundations of bioelectronics in tissue regeneration.
Biomaterials. 2025 Nov;322:123385. doi: 10.1016/j.biomaterials.2025.123385. Epub 2025 May 2.
2
Meeting Review: "National Cancer Institute Conference on Cancer Bioelectricity" September 12, 2024.
Bioelectricity. 2025 Mar 18;7(1):94-104. doi: 10.1089/bioe.2024.0049. eCollection 2025 Mar.
5
Neuronal mimicry in tumors: lessons from neuroscience to tackle cancer.
Cancer Metastasis Rev. 2025 Feb 11;44(1):31. doi: 10.1007/s10555-025-10249-3.
6
Direct current electrical fields inhibit cancer cell motility in microchannel confinements.
Sci Rep. 2025 Feb 7;15(1):4605. doi: 10.1038/s41598-025-87737-7.
7
Bioelectricity is a universal multifaced signaling cue in living organisms.
Mol Biol Cell. 2025 Feb 1;36(2):pe2. doi: 10.1091/mbc.E23-08-0312.
8
Impact of dcEF on microRNA profiles in glioblastoma and exosomes using a novel microfluidic bioreactor.
Biomicrofluidics. 2024 Dec 27;18(6):064106. doi: 10.1063/5.0228901. eCollection 2024 Dec.
10
Harnessing the Membrane Potential to Combat Cancer Progression.
Bioelectricity. 2022 May 26;4(2):75-80. doi: 10.1089/bioe.2022.0001. eCollection 2022 May.

本文引用的文献

1
Exosome-Mediated Metastasis: Communication from a Distance.
Dev Cell. 2019 May 6;49(3):347-360. doi: 10.1016/j.devcel.2019.04.011.
2
Keratinocyte electrotaxis induced by physiological pulsed direct current electric fields.
Bioelectrochemistry. 2019 Jun;127:113-124. doi: 10.1016/j.bioelechem.2019.02.001. Epub 2019 Feb 14.
3
ReDO_DB: the repurposing drugs in oncology database.
Ecancermedicalscience. 2018 Dec 6;12:886. doi: 10.3332/ecancer.2018.886. eCollection 2018.
4
EDEn-Electroceutical Design Environment: Ion Channel Tissue Expression Database with Small Molecule Modulators.
iScience. 2019 Jan 25;11:42-56. doi: 10.1016/j.isci.2018.12.003. Epub 2018 Dec 11.
5
A framework for the development of effective anti-metastatic agents.
Nat Rev Clin Oncol. 2019 Mar;16(3):185-204. doi: 10.1038/s41571-018-0134-8.
6
A Feedforward Mechanism Mediated by Mechanosensitive Ion Channel PIEZO1 and Tissue Mechanics Promotes Glioma Aggression.
Neuron. 2018 Nov 21;100(4):799-815.e7. doi: 10.1016/j.neuron.2018.09.046. Epub 2018 Oct 18.
7
Recent advances in understanding the complexities of metastasis.
F1000Res. 2018 Aug 1;7. doi: 10.12688/f1000research.15064.2. eCollection 2018.
8
10
Actin-Based Cell Protrusion in a 3D Matrix.
Trends Cell Biol. 2018 Oct;28(10):823-834. doi: 10.1016/j.tcb.2018.06.003. Epub 2018 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验