Suppr超能文献

随机平衡神经网络中的非正态放大

Non-normal amplification in random balanced neuronal networks.

作者信息

Hennequin Guillaume, Vogels Tim P, Gerstner Wulfram

机构信息

School of Computer and Communication Sciences and Brain-Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 EPFL, Switzerland.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 1):011909. doi: 10.1103/PhysRevE.86.011909. Epub 2012 Jul 11.

Abstract

In dynamical models of cortical networks, the recurrent connectivity can amplify the input given to the network in two distinct ways. One is induced by the presence of near-critical eigenvalues in the connectivity matrix W, producing large but slow activity fluctuations along the corresponding eigenvectors (dynamical slowing). The other relies on W not being normal, which allows the network activity to make large but fast excursions along specific directions. Here we investigate the trade-off between non-normal amplification and dynamical slowing in the spontaneous activity of large random neuronal networks composed of excitatory and inhibitory neurons. We use a Schur decomposition of W to separate the two amplification mechanisms. Assuming linear stochastic dynamics, we derive an exact expression for the expected amount of purely non-normal amplification. We find that amplification is very limited if dynamical slowing must be kept weak. We conclude that, to achieve strong transient amplification with little slowing, the connectivity must be structured. We show that unidirectional connections between neurons of the same type together with reciprocal connections between neurons of different types, allow for amplification already in the fast dynamical regime. Finally, our results also shed light on the differences between balanced networks in which inhibition exactly cancels excitation and those where inhibition dominates.

摘要

在皮层网络的动力学模型中,循环连接性可以通过两种不同方式放大输入到网络的信号。一种是由连接矩阵W中接近临界特征值的存在所引发,沿着相应特征向量产生大但缓慢的活动波动(动力学减慢)。另一种则依赖于W不是正规矩阵,这使得网络活动能够沿着特定方向进行大但快速的偏移。在此,我们研究由兴奋性和抑制性神经元组成的大型随机神经元网络自发活动中,非正规放大与动力学减慢之间的权衡。我们使用W的舒尔分解来分离这两种放大机制。假设线性随机动力学,我们推导出纯非正规放大预期量的精确表达式。我们发现,如果动力学减慢必须保持较弱,放大作用会非常有限。我们得出结论,要在几乎没有减慢的情况下实现强烈的瞬态放大,连接性必须是有结构的。我们表明,同类型神经元之间的单向连接以及不同类型神经元之间的相互连接,即使在快速动力学状态下也能实现放大。最后,我们的结果还揭示了抑制恰好抵消兴奋的平衡网络与抑制占主导的平衡网络之间的差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验