Suppr超能文献

具有短期可塑性的递归神经网络中的非线性瞬态放大。

Nonlinear transient amplification in recurrent neural networks with short-term plasticity.

机构信息

Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.

Faculty of Natural Sciences, University of Basel, Basel, Switzerland.

出版信息

Elife. 2021 Dec 13;10:e71263. doi: 10.7554/eLife.71263.

Abstract

To rapidly process information, neural circuits have to amplify specific activity patterns transiently. How the brain performs this nonlinear operation remains elusive. Hebbian assemblies are one possibility whereby strong recurrent excitatory connections boost neuronal activity. However, such Hebbian amplification is often associated with dynamical slowing of network dynamics, non-transient attractor states, and pathological run-away activity. Feedback inhibition can alleviate these effects but typically linearizes responses and reduces amplification gain. Here, we study nonlinear transient amplification (NTA), a plausible alternative mechanism that reconciles strong recurrent excitation with rapid amplification while avoiding the above issues. NTA has two distinct temporal phases. Initially, positive feedback excitation selectively amplifies inputs that exceed a critical threshold. Subsequently, short-term plasticity quenches the run-away dynamics into an inhibition-stabilized network state. By characterizing NTA in supralinear network models, we establish that the resulting onset transients are stimulus selective and well-suited for speedy information processing. Further, we find that excitatory-inhibitory co-tuning widens the parameter regime in which NTA is possible in the absence of persistent activity. In summary, NTA provides a parsimonious explanation for how excitatory-inhibitory co-tuning and short-term plasticity collaborate in recurrent networks to achieve transient amplification.

摘要

为了快速处理信息,神经回路必须暂时放大特定的活动模式。大脑如何执行这种非线性操作仍然难以捉摸。赫布型集合是一种可能性,其中强的递归兴奋性连接增强神经元活动。然而,这种赫布式的放大通常与网络动力学的动态减慢、非瞬态吸引子状态和病理性的失控活动有关。反馈抑制可以减轻这些影响,但通常会使响应线性化并降低放大增益。在这里,我们研究了非线性瞬态放大(NTA),这是一种可行的替代机制,它在避免上述问题的同时,将强的递归兴奋与快速放大结合在一起。NTA 有两个不同的时间阶段。最初,正反馈兴奋选择性地放大超过临界阈值的输入。随后,短期可塑性将失控动力学猝灭到抑制稳定的网络状态。通过在超线性网络模型中对 NTA 进行特征描述,我们确定了由此产生的起始瞬态是刺激选择性的,非常适合快速信息处理。此外,我们发现兴奋性抑制性共调在没有持续活动的情况下扩大了 NTA 可能存在的参数范围。总之,NTA 为兴奋性抑制性共调与短期可塑性如何在递归网络中协作实现瞬态放大提供了一个简洁的解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33e2/8820736/c258ba4d3c6c/elife-71263-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验