Suppr超能文献

在增加光照强度下的光学作图。

Optical mapping at increased illumination intensities.

机构信息

Lithuanian University of Health Sciences, Institute of Cardiology, Laboratory of Membrane Biophysics, 17 Sukileliu pr, Kaunas 50161, Lithuania.

出版信息

J Biomed Opt. 2012 Sep;17(9):96007-1. doi: 10.1117/1.JBO.17.9.096007.

Abstract

Voltage-sensitive fluorescent dyes have become a major tool in cardiac and neuro-electrophysiology. Achieving high signal-to-noise ratios requires increased illumination intensities, which may cause photobleaching and phototoxicity. The optimal range of illumination intensities varies for different dyes and must be evaluated individually. We evaluate two dyes: di-4-ANBDQBS (excitation 660 nm) and di-4-ANEPPS (excitation 532 nm) in the guinea pig heart. The light intensity varies from 0.1 to 5  mW/mm2, with the upper limit at 5 to 10 times above values reported in the literature. The duration of illumination was 60 s, which in guinea pigs corresponds to 300 beats at a normal heart rate. Within the identified duration and intensity range, neither dye shows significant photobleaching or detectable phototoxic effects. However, light absorption at higher intensities causes noticeable tissue heating, which affects the electrophysiological parameters. The most pronounced effect is a shortening of the action potential duration, which, in the case of 532-nm excitation, can reach ∼30%. At 660-nm excitation, the effect is ∼10%. These findings may have important implications for the design of optical mapping protocols in biomedical applications.

摘要

电压敏感型荧光染料已成为心脏和神经电生理学的主要工具。为了获得高信噪比,需要增加照明强度,但这可能会导致荧光漂白和光毒性。不同染料的最佳照明强度范围不同,必须单独评估。我们在豚鼠心脏中评估了两种染料:二-4-ANBDQBS(激发波长 660nm)和二-4-ANEPPS(激发波长 532nm)。光强度从 0.1 到 5mW/mm2 变化,上限为文献报道值的 5 到 10 倍。照明持续时间为 60 秒,在正常心率下,这相当于豚鼠的 300 次跳动。在所确定的持续时间和强度范围内,两种染料均未显示出明显的荧光漂白或可检测的光毒性作用。然而,在更高强度下的光吸收会导致明显的组织加热,从而影响电生理参数。最明显的影响是动作电位持续时间缩短,在 532nm 激发的情况下,可达约 30%。在 660nm 激发的情况下,该效应约为 10%。这些发现可能对生物医学应用中的光学映射方案的设计具有重要意义。

相似文献

1
Optical mapping at increased illumination intensities.
J Biomed Opt. 2012 Sep;17(9):96007-1. doi: 10.1117/1.JBO.17.9.096007.
2
Dual excitation wavelength epifluorescence imaging of transmural electrophysiological properties in intact hearts.
Heart Rhythm. 2010 Dec;7(12):1843-9. doi: 10.1016/j.hrthm.2010.08.019. Epub 2010 Sep 29.
4
Near-infrared voltage-sensitive fluorescent dyes optimized for optical mapping in blood-perfused myocardium.
Heart Rhythm. 2007 Nov;4(11):1441-51. doi: 10.1016/j.hrthm.2007.07.012. Epub 2007 Jul 17.
5
The voltage-sensitive dye di-4-ANEPPS slows conduction velocity in isolated guinea pig hearts.
Heart Rhythm. 2012 Sep;9(9):1493-500. doi: 10.1016/j.hrthm.2012.04.034. Epub 2012 Apr 24.
6
Optical imaging of the heart: Seeing below the surface.
Heart Rhythm. 2010 Dec;7(12):1850-1. doi: 10.1016/j.hrthm.2010.09.007. Epub 2010 Sep 15.
7
Experimental validation of alternating transillumination for imaging intramural wave propagation.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1676-9. doi: 10.1109/IEMBS.2011.6090482.
8
Optical mapping of Langendorff-perfused rat hearts.
J Vis Exp. 2009 Aug 11(30):1138. doi: 10.3791/1138.
9
High-precision recording of the action potential in isolated cardiomyocytes using the near-infrared fluorescent dye di-4-ANBDQBS.
Am J Physiol Heart Circ Physiol. 2010 Oct;299(4):H1271-81. doi: 10.1152/ajpheart.00248.2010. Epub 2010 Jul 2.
10
Fluorescence imaging of cardiac propagation: spectral properties and filtering of optical action potentials.
Am J Physiol Heart Circ Physiol. 2006 Jul;291(1):H327-35. doi: 10.1152/ajpheart.01003.2005. Epub 2006 Jan 20.

引用本文的文献

2
Living myocardial slices: Advancing arrhythmia research.
Front Physiol. 2023 Jan 13;14:1076261. doi: 10.3389/fphys.2023.1076261. eCollection 2023.
3
Portable low-cost macroscopic mapping system for all-optical cardiac electrophysiology.
J Biomed Opt. 2023 Jan;28(1):016001. doi: 10.1117/1.JBO.28.1.016001. Epub 2023 Jan 10.
4
Genetic algorithm-based personalized models of human cardiac action potential.
PLoS One. 2020 May 11;15(5):e0231695. doi: 10.1371/journal.pone.0231695. eCollection 2020.
5
Cardiac Optogenetics and Optical Mapping - Overcoming Spectral Congestion in All-Optical Cardiac Electrophysiology.
Front Physiol. 2019 Mar 7;10:182. doi: 10.3389/fphys.2019.00182. eCollection 2019.
6
In vivo ratiometric optical mapping enables high-resolution cardiac electrophysiology in pig models.
Cardiovasc Res. 2019 Sep 1;115(11):1659-1671. doi: 10.1093/cvr/cvz039.
7
Evaluation of excitation propagation in the rabbit heart: optical mapping and transmural microelectrode recordings.
PLoS One. 2015 Apr 16;10(4):e0123050. doi: 10.1371/journal.pone.0123050. eCollection 2015.
8
Evolution of action potential alternans in rabbit heart during acute regional ischemia.
Biomed Res Int. 2015;2015:951704. doi: 10.1155/2015/951704. Epub 2015 Feb 26.
9
Toward microendoscopy-inspired cardiac optogenetics in vivo: technical overview and perspective.
J Biomed Opt. 2014 Aug;19(8):080701. doi: 10.1117/1.JBO.19.8.080701.

本文引用的文献

1
Interventricular heterogeneity as a substrate for arrhythmogenesis of decoupled mitochondria during ischemia in the whole heart.
Am J Physiol Heart Circ Physiol. 2012 Jul 15;303(2):H224-33. doi: 10.1152/ajpheart.00017.2012. Epub 2012 May 25.
3
Complex structure of electrophysiological gradients emerging during long-duration ventricular fibrillation in the canine heart.
Am J Physiol Heart Circ Physiol. 2010 Nov;299(5):H1405-18. doi: 10.1152/ajpheart.00419.2010. Epub 2010 Aug 27.
4
High-precision recording of the action potential in isolated cardiomyocytes using the near-infrared fluorescent dye di-4-ANBDQBS.
Am J Physiol Heart Circ Physiol. 2010 Oct;299(4):H1271-81. doi: 10.1152/ajpheart.00248.2010. Epub 2010 Jul 2.
6
Monitoring intramyocardial reentry using alternating transillumination.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4194-7. doi: 10.1109/IEMBS.2009.5334048.
7
Heat stress responses modulate calcium regulations and electrophysiological characteristics in atrial myocytes.
J Mol Cell Cardiol. 2010 Apr;48(4):781-8. doi: 10.1016/j.yjmcc.2009.08.006. Epub 2009 Aug 18.
9
Depth-resolved optical imaging of transmural electrical propagation in perfused heart.
Opt Express. 2007 Dec 24;15(26):17827-41. doi: 10.1364/oe.15.017827.
10
Near-infrared voltage-sensitive fluorescent dyes optimized for optical mapping in blood-perfused myocardium.
Heart Rhythm. 2007 Nov;4(11):1441-51. doi: 10.1016/j.hrthm.2007.07.012. Epub 2007 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验