Suppr超能文献

真菌杀菌剂研究中的基因组学开发:现状与未来展望。

Exploitation of genomics in fungicide research: current status and future perspectives.

机构信息

Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.

出版信息

Mol Plant Pathol. 2013 Feb;14(2):197-210. doi: 10.1111/mpp.12001. Epub 2012 Nov 16.

Abstract

Every year, fungicide use to control plant disease caused by pathogenic fungi increases. The global fungicide market is now worth more than £5.3 billion, second only to the herbicide market in importance. In the UK, over 5500 tonnes of fungicide were applied to crops in 2010 (The Food and Environment Research Agency, Pesticide Usage Statistics), with 95.5% of the wheat-growing area receiving three fungicide sprays. Although dependence on fungicides to produce food securely, reliably and cheaply may be moderated in the future by further developments in crop biotechnology, modern crop protection will continue to require a diversity of solutions, including effective and safe chemical control. Therefore, investment in exploiting the increasingly available genome sequences of the most devastating fungal and oomycete phytopathogenic species should bring an array of new opportunities for chemical intervention. To date, the impact of whole genome research on the development, introduction and stewardship of fungicides has been limited, but ongoing improvements in computational analysis, molecular biology, chemical genetics, genome sequencing and transcriptomics will facilitate the development and registration of the future suite of crop protection chemicals.

摘要

每年,用于防治由病原真菌引起的植物病害的杀菌剂使用量都在增加。目前,全球杀菌剂市场价值超过 53 亿英镑,仅次于除草剂市场。在英国,2010 年有超过 5500 吨的杀菌剂被施用于农作物(食品与环境研究局,农药使用统计),95.5%的小麦种植区接受了三次杀菌剂喷雾。尽管未来通过作物生物技术的进一步发展,可能会减轻对杀菌剂的依赖,从而安全、可靠和廉价地生产食物,但现代作物保护仍将需要多种解决方案,包括有效和安全的化学控制。因此,开发越来越多的破坏性最强的真菌和卵菌植物病原菌的基因组序列,将为化学干预带来一系列新的机会。迄今为止,全基因组研究对杀菌剂的开发、引入和管理的影响有限,但计算分析、分子生物学、化学遗传学、基因组测序和转录组学的持续改进将有助于开发和注册未来一系列的作物保护化学品。

相似文献

1
Exploitation of genomics in fungicide research: current status and future perspectives.
Mol Plant Pathol. 2013 Feb;14(2):197-210. doi: 10.1111/mpp.12001. Epub 2012 Nov 16.
3
Rapid Parallel Evolution of Azole Fungicide Resistance in Australian Populations of the Wheat Pathogen .
Appl Environ Microbiol. 2019 Feb 6;85(4). doi: 10.1128/AEM.01908-18. Print 2019 Feb 15.
4
Fungi, fungicide discovery and global food security.
Fungal Genet Biol. 2020 Nov;144:103476. doi: 10.1016/j.fgb.2020.103476. Epub 2020 Oct 11.
6
Molecular Monitoring of Fungicide Resistance in Crop Phytopathogens.
Mol Plant Microbe Interact. 2025 Mar;38(2):160-172. doi: 10.1094/MPMI-09-24-0105-FI. Epub 2025 Apr 25.
8
9
Fungicide Resistance: Progress in Understanding Mechanism, Monitoring, and Management.
Phytopathology. 2023 Apr;113(4):707-718. doi: 10.1094/PHYTO-10-22-0370-KD. Epub 2023 May 4.
10
The evolution of fungicide resistance.
Adv Appl Microbiol. 2015;90:29-92. doi: 10.1016/bs.aambs.2014.09.001. Epub 2014 Nov 12.

引用本文的文献

1
A conserved fungal Knr4/Smi1 protein is crucial for maintaining cell wall stress tolerance and host plant pathogenesis.
PLoS Pathog. 2025 Jan 9;21(1):e1012769. doi: 10.1371/journal.ppat.1012769. eCollection 2025 Jan.
2
The photoactivated antifungal activity and possible mode of action of sodium pheophorbide a on causing leaf spot blight in .
Front Microbiol. 2024 Jun 13;15:1403478. doi: 10.3389/fmicb.2024.1403478. eCollection 2024.
3
Phenotypic analysis and genome sequence of strain Y5, the causal agent of tobacco pole rot.
Front Microbiol. 2023 Jan 4;13:1031023. doi: 10.3389/fmicb.2022.1031023. eCollection 2022.
8
Climate-Fungal Pathogen Modeling Predicts Loss of Up to One-Third of Tea Growing Areas.
Front Cell Infect Microbiol. 2021 Apr 29;11:610567. doi: 10.3389/fcimb.2021.610567. eCollection 2021.
9
Advances in fungal chemical genomics for the discovery of new antifungal agents.
Ann N Y Acad Sci. 2021 Jul;1496(1):5-22. doi: 10.1111/nyas.14484. Epub 2020 Aug 28.
10
In vitro antifungal activity of dimethyl trisulfide against Colletotrichum gloeosporioides from mango.
World J Microbiol Biotechnol. 2019 Dec 12;36(1):4. doi: 10.1007/s11274-019-2781-z.

本文引用的文献

4
Genome evolution in filamentous plant pathogens: why bigger can be better.
Nat Rev Microbiol. 2012 May 8;10(6):417-30. doi: 10.1038/nrmicro2790.
5
Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum.
PLoS Pathog. 2011 Dec;7(12):e1002460. doi: 10.1371/journal.ppat.1002460. Epub 2011 Dec 22.
6
OmniMapFree: a unified tool to visualise and explore sequenced genomes.
BMC Bioinformatics. 2011 Nov 15;12:447. doi: 10.1186/1471-2105-12-447.
7
A guide to binary vectors and strategies for targeted genome modification in fungi using Agrobacterium tumefaciens-mediated transformation.
J Microbiol Methods. 2011 Dec;87(3):247-62. doi: 10.1016/j.mimet.2011.09.004. Epub 2011 Sep 17.
8
Risk assessment studies on succinate dehydrogenase inhibitors, the new weapons in the battle to control Septoria leaf blotch in wheat.
Mol Plant Pathol. 2012 Apr;13(3):263-75. doi: 10.1111/j.1364-3703.2011.00746.x. Epub 2011 Sep 20.
10
Minimum information about a bioactive entity (MIABE).
Nat Rev Drug Discov. 2011 Aug 31;10(9):661-9. doi: 10.1038/nrd3503.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验