RTI International, Research Triangle Park, NC 27709, USA.
J Acad Nutr Diet. 2012 Dec;112(12):1968-75. doi: 10.1016/j.jand.2012.08.032.
Nutrient profiling of foods is the science of ranking or classifying foods based on their nutrient composition. Most profiling systems use similar weighting factors across nutrients due to lack of scientific evidence to assign levels of importance to nutrients.
Our aim was to use a statistical approach to determine the nutrients that best explain variation in Healthy Eating Index (HEI) scores and to obtain β-coefficients for the nutrients for use as weighting factors for a nutrient-profiling algorithm.
We used a cross-sectional analysis of nutrient intakes and HEI scores.
Our subjects included 16,587 individuals from the National Health and Nutrition Examination Survey 2005-2008 who were 2 years of age or older and not pregnant.
Our main outcome measure was variation (R(2)) in HEI scores.
Linear regression analyses were conducted with HEI scores as the dependent variable and all possible combinations of 16 nutrients of interest as independent variables, with covariates age, sex, and ethnicity. The analyses identified the best 1-nutrient variable model (with the highest R(2)), the best 2-nutrient variable model, and up to the best 16-nutrient variable model.
The model with 8 nutrients explained 65% of the variance in HEI scores, similar to the models with 9 to 16 nutrients, but substantially higher than previous algorithms reported in the literature. The model contained five nutrients with positive β-coefficients (ie, protein, fiber, calcium, unsaturated fat, and vitamin C) and three nutrients with negative coefficients (ie, saturated fat, sodium, and added sugar). β-coefficients from the model were used as weighting factors to create an algorithm that generated a weighted nutrient density score representing the overall nutritional quality of a food.
The weighted nutrient density score can be easily calculated and is useful for describing the overall nutrient quality of both foods and diets.
食品营养成分分析是根据食品的营养成分对其进行分类或分级的科学。由于缺乏为营养成分分配重要性水平的科学证据,大多数分析系统在营养成分方面使用相似的加权因素。
我们旨在使用统计方法来确定最佳解释健康饮食指数(HEI)评分变化的营养素,并为营养成分获得β系数,以便将其用作营养成分分析算法的加权因素。
我们使用了 2005-2008 年全国健康和营养检查调查中营养素摄入量和 HEI 评分的横断面分析。
我们的研究对象包括年龄在 2 岁及以上且未怀孕的 16587 名来自全国健康和营养检查调查 2005-2008 年的个体。
我们的主要观察指标是 HEI 评分的变化(R2)。
使用 HEI 评分作为因变量,所有 16 种感兴趣的营养素的所有可能组合作为自变量进行线性回归分析,并对年龄、性别和种族进行了协变量调整。分析确定了最佳的 1 种营养素变量模型(具有最高 R2)、最佳的 2 种营养素变量模型,以及最多可达最佳的 16 种营养素变量模型。
包含 8 种营养素的模型解释了 HEI 评分 65%的方差,与包含 9 到 16 种营养素的模型相似,但大大高于文献中报道的先前算法。该模型包含 5 种具有正β系数(即蛋白质、纤维、钙、不饱和脂肪和维生素 C)的营养素和 3 种具有负系数(即饱和脂肪、钠和添加糖)的营养素。模型中的β系数被用作加权因素,以创建一个算法,生成代表食物整体营养质量的加权营养密度得分。
加权营养密度得分易于计算,可用于描述食物和饮食的整体营养质量。