Center for Cell Decision Processes, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
Mol Syst Biol. 2013;9:644. doi: 10.1038/msb.2012.69.
Using models to simulate and analyze biological networks requires principled approaches to parameter estimation and model discrimination. We use Bayesian and Monte Carlo methods to recover the full probability distributions of free parameters (initial protein concentrations and rate constants) for mass-action models of receptor-mediated cell death. The width of the individual parameter distributions is largely determined by non-identifiability but covariation among parameters, even those that are poorly determined, encodes essential information. Knowledge of joint parameter distributions makes it possible to compute the uncertainty of model-based predictions whereas ignoring it (e.g., by treating parameters as a simple list of values and variances) yields nonsensical predictions. Computing the Bayes factor from joint distributions yields the odds ratio (∼20-fold) for competing 'direct' and 'indirect' apoptosis models having different numbers of parameters. Our results illustrate how Bayesian approaches to model calibration and discrimination combined with single-cell data represent a generally useful and rigorous approach to discriminate between competing hypotheses in the face of parametric and topological uncertainty.
使用模型模拟和分析生物网络需要有原则的方法来进行参数估计和模型区分。我们使用贝叶斯和蒙特卡罗方法来恢复受体介导的细胞死亡的质量作用模型中自由参数(初始蛋白质浓度和速率常数)的完整概率分布。个体参数分布的宽度在很大程度上取决于不可识别性,但参数之间的协变,即使是那些难以确定的参数,也编码了重要信息。了解联合参数分布使得有可能计算基于模型的预测的不确定性,而忽略它(例如,通过将参数视为简单的数值列表和方差)会产生无意义的预测。从联合分布中计算贝叶斯因子可以得到具有不同参数数量的竞争“直接”和“间接”细胞凋亡模型的优势比(约 20 倍)。我们的结果说明了如何将模型校准和区分的贝叶斯方法与单细胞数据相结合,代表了一种在面对参数和拓扑不确定性时区分竞争假设的普遍有用和严格的方法。