Suppr超能文献

韩国男性肺癌个体化风险预测模型。

Individualized risk prediction model for lung cancer in Korean men.

机构信息

Biometric Research Branch, National Cancer Center, Goyang, Republic of Korea.

出版信息

PLoS One. 2013;8(2):e54823. doi: 10.1371/journal.pone.0054823. Epub 2013 Feb 7.

Abstract

PURPOSE

Lung cancer is the leading cause of cancer deaths in Korea. The objective of the present study was to develop an individualized risk prediction model for lung cancer in Korean men using population-based cohort data.

METHODS

From a population-based cohort study of 1,324,804 Korean men free of cancer at baseline, the individualized absolute risk of developing lung cancer was estimated using the Cox proportional hazards model. We checked the validity of the model using C statistics and the Hosmer-Lemeshow chi-square test on an external validation dataset.

RESULTS

The risk prediction model for lung cancer in Korean men included smoking exposure, age at smoking initiation, body mass index, physical activity, and fasting glucose levels. The model showed excellent performance (C statistic = 0.871, 95% CI = 0.867-0.876). Smoking was significantly associated with the risk of lung cancer in Korean men, with a four-fold increased risk in current smokers consuming more than one pack a day relative to non-smokers. Age at smoking initiation was also a significant predictor for developing lung cancer; a younger age at initiation was associated with a higher risk of developing lung cancer.

CONCLUSION

This is the first study to provide an individualized risk prediction model for lung cancer in an Asian population with very good model performance. In addition to current smoking status, earlier exposure to smoking was a very important factor for developing lung cancer. Since most of the risk factors are modifiable, this model can be used to identify those who are at a higher risk and who can subsequently modify their lifestyle choices to lower their risk of lung cancer.

摘要

目的

肺癌是韩国癌症死亡的主要原因。本研究的目的是利用基于人群的队列数据为韩国男性开发一种用于肺癌的个体化风险预测模型。

方法

本研究基于一项针对 1324804 名韩国男性的基于人群的队列研究,在基线时无癌症,使用 Cox 比例风险模型估计发生肺癌的个体化绝对风险。我们使用 C 统计量和 Hosmer-Lemeshow 卡方检验在外部验证数据集上检查了模型的有效性。

结果

韩国男性肺癌风险预测模型包括吸烟暴露、吸烟起始年龄、体重指数、身体活动和空腹血糖水平。该模型表现出优异的性能(C 统计量=0.871,95%CI=0.867-0.876)。吸烟与韩国男性肺癌风险显著相关,与不吸烟者相比,每天吸烟超过一包的当前吸烟者肺癌风险增加了四倍。吸烟起始年龄也是发生肺癌的一个重要预测因素;起始年龄越小,发生肺癌的风险越高。

结论

这是第一项针对亚洲人群提供肺癌个体化风险预测模型的研究,该模型具有非常好的性能。除了当前的吸烟状况外,较早接触吸烟也是发生肺癌的一个非常重要的因素。由于大多数风险因素是可以改变的,因此该模型可用于识别那些风险较高的人群,随后他们可以改变生活方式选择来降低肺癌风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/363f/3567090/12c66051f777/pone.0054823.g001.jpg

相似文献

1
Individualized risk prediction model for lung cancer in Korean men.
PLoS One. 2013;8(2):e54823. doi: 10.1371/journal.pone.0054823. Epub 2013 Feb 7.
2
Development and Validation of a Prediction Model to Estimate Individual Risk of Pancreatic Cancer.
PLoS One. 2016 Jan 11;11(1):e0146473. doi: 10.1371/journal.pone.0146473. eCollection 2016.
3
Development of a risk prediction model for lung cancer: The Japan Public Health Center-based Prospective Study.
Cancer Sci. 2018 Mar;109(3):854-862. doi: 10.1111/cas.13509. Epub 2018 Feb 21.
4
Combined effects of smoking and bilirubin levels on the risk of lung cancer in Korea: the severance cohort study.
PLoS One. 2014 Aug 6;9(8):e103972. doi: 10.1371/journal.pone.0103972. eCollection 2014.
5
Lung cancer risk prediction: Prostate, Lung, Colorectal And Ovarian Cancer Screening Trial models and validation.
J Natl Cancer Inst. 2011 Jul 6;103(13):1058-68. doi: 10.1093/jnci/djr173. Epub 2011 May 23.
6
Lifestyle Risk Prediction Model for Prostate Cancer in a Korean Population.
Cancer Res Treat. 2018 Oct;50(4):1194-1202. doi: 10.4143/crt.2017.484. Epub 2017 Dec 21.
7
Smoking and cancer risk in Korean men and women.
Cancer Causes Control. 2004 May;15(4):341-8. doi: 10.1023/B:CACO.0000027481.48153.97.
9
Effects of smoking on the mortality of lung cancer in Korean men.
Yonsei Med J. 2001 Apr;42(2):155-60. doi: 10.3349/ymj.2001.42.2.155.
10
Hazard Ratio of Smoking on Lung Cancer in Korea According to Histological Type and Gender.
Lung. 2016 Apr;194(2):281-9. doi: 10.1007/s00408-015-9836-1. Epub 2015 Dec 31.

引用本文的文献

3
Physical activity and risk of lung cancer: A systematic review and dose-response meta-analysis of cohort studies.
J Natl Cancer Cent. 2023 Feb 3;3(1):48-55. doi: 10.1016/j.jncc.2022.12.003. eCollection 2023 Mar.
5
Exploring the efficacy of artificial neural networks in predicting lung cancer recurrence: a retrospective study based on patient records.
Transl Lung Cancer Res. 2023 Oct 31;12(10):2083-2097. doi: 10.21037/tlcr-23-350. Epub 2023 Oct 26.
7
Development of lung cancer risk prediction models based on F-18 FDG PET images.
Ann Nucl Med. 2023 Oct;37(10):572-582. doi: 10.1007/s12149-023-01858-5. Epub 2023 Jul 17.

本文引用的文献

1
Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2009.
Cancer Res Treat. 2012 Mar;44(1):11-24. doi: 10.4143/crt.2012.44.1.11. Epub 2012 Mar 31.
2
Lung cancer risk prediction: Prostate, Lung, Colorectal And Ovarian Cancer Screening Trial models and validation.
J Natl Cancer Inst. 2011 Jul 6;103(13):1058-68. doi: 10.1093/jnci/djr173. Epub 2011 May 23.
3
A review of human carcinogens--Part E: tobacco, areca nut, alcohol, coal smoke, and salted fish.
Lancet Oncol. 2009 Nov;10(11):1033-4. doi: 10.1016/s1470-2045(09)70326-2.
4
Development and validation of a lung cancer risk prediction model for African-Americans.
Cancer Prev Res (Phila). 2008 Sep;1(4):255-65. doi: 10.1158/1940-6207.CAPR-08-0082.
5
Lung cancer occurrence in never-smokers: an analysis of 13 cohorts and 22 cancer registry studies.
PLoS Med. 2008 Sep 30;5(9):e185. doi: 10.1371/journal.pmed.0050185. Epub 2008 Sep 9.
6
Body mass index and cancer risk in Korean men and women.
Int J Cancer. 2008 Oct 15;123(8):1892-6. doi: 10.1002/ijc.23719.
8
The LLP risk model: an individual risk prediction model for lung cancer.
Br J Cancer. 2008 Jan 29;98(2):270-6. doi: 10.1038/sj.bjc.6604158. Epub 2007 Dec 18.
9
Tobacco smoking and cancer: a meta-analysis.
Int J Cancer. 2008 Jan 1;122(1):155-64. doi: 10.1002/ijc.23033.
10
A risk model for prediction of lung cancer.
J Natl Cancer Inst. 2007 May 2;99(9):715-26. doi: 10.1093/jnci/djk153.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验