Suppr超能文献

分类和动作学习的持久性:使用超伽马分布分析揭示的差异。

Durability of classification and action learning: differences revealed using ex-Gaussian distribution analysis.

机构信息

Université Paris Descartes, Sorbonne Paris Cité, Paris, France.

出版信息

Exp Brain Res. 2013 May;226(3):373-82. doi: 10.1007/s00221-013-3445-0. Epub 2013 Mar 2.

Abstract

It has been shown that in associative learning it is possible to disentangle the effects caused on behaviour by the associations between a stimulus and a classification (S-C) and the associations between a stimulus and the action performed towards it (S-A). Such evidence has been provided using ex-Gaussian distribution analysis to show that different parameters of the reaction time distribution reflect the different processes. Here, using this method, we investigate another difference between these two types of associations: What is the relative durability of these associations across time? Using a task-switching paradigm and by manipulating the lag between the point of the creation of the associations and the test phase, we show that S-A associations have stronger effects on behaviour when the lag between the two repetitions of a stimulus is short. However, classification learning affects behaviour not only in short-term lags but also (and equally so) when the lag between prime and probe is long and the same stimuli are repeatedly presented within a different classification task, demonstrating a remarkable durability of S-C associations.

摘要

已经表明,在联想学习中,可以区分刺激与分类(S-C)之间的关联以及刺激与对其执行的动作(S-A)之间的关联对行为产生的影响。使用超指数分布分析提供了这样的证据,表明反应时间分布的不同参数反映了不同的过程。在这里,我们使用这种方法研究了这两种关联之间的另一个区别:这些关联在时间上的相对持久性如何?使用任务转换范式并通过操纵创建关联和测试阶段之间的滞后时间,可以表明,当刺激的两个重复之间的滞后时间较短时,S-A 关联对行为的影响更大。然而,分类学习不仅在短时间滞后时而且在长时间滞后时(当启动和探测之间的滞后时间较长并且相同的刺激在不同的分类任务中重复呈现时)也会影响行为,这表明 S-C 关联具有显著的持久性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验