IEETA, Universidade de Aveiro, Aveiro, Portugal.
PLoS One. 2013 May 6;8(5):e61888. doi: 10.1371/journal.pone.0061888. Print 2013.
Content-based image retrieval (CBIR) has been heralded as a mechanism to cope with the increasingly larger volumes of information present in medical imaging repositories. However, generic, extensible CBIR frameworks that work natively with Picture Archive and Communication Systems (PACS) are scarce. In this article we propose a methodology for parametric CBIR based on similarity profiles. The architecture and implementation of a profiled CBIR system, based on query by example, atop Dicoogle, an open-source, full-fletched PACS is also presented and discussed. In this solution, CBIR profiles allow the specification of both a distance function to be applied and the feature set that must be present for that function to operate. The presented framework provides the basis for a CBIR expansion mechanism and the solution developed integrates with DICOM based PACS networks where it provides CBIR functionality in a seamless manner.
基于内容的图像检索 (CBIR) 被认为是一种应对医学图像存储库中信息量不断增加的机制。然而,与图像存档与通信系统 (PACS) 原生兼容的通用、可扩展的 CBIR 框架却很少见。在本文中,我们提出了一种基于相似性轮廓的参数化 CBIR 方法。我们还提出并讨论了一种基于示例查询的、在 Dicoogle 之上构建的轮廓 CBIR 系统的体系结构和实现,Dicoogle 是一个开源的、功能齐全的 PACS。在这个解决方案中,CBIR 轮廓允许指定要应用的距离函数以及必须存在的特征集,以便该函数进行操作。所提出的框架为 CBIR 扩展机制提供了基础,所开发的解决方案与基于 DICOM 的 PACS 网络集成,在该网络中,它以无缝的方式提供 CBIR 功能。